Previous |  Up |  Next


eigenvalue problem; normal operator; Kellogg's iteration; Hilbert space; eigenvector
We will discuss Kellogg's iterations in eigenvalue problems for normal operators. A certain generalisation of the convergence theorem is shown.
[1] N. Dunford J. T. Schwartz: Linear operators. I(II), Mir, Moskva 1962 (1966). MR 0216303
[2] T. Kojecký: Some results about convergence of Kellogg's iterations in eigenvalue problems. Czechoslovak Math. J. (to appear).
[3] J. Kolomý: Approximate determination of eigenvalues and eigenvectors of self-adjoint operators. Ann. Math. Pol. 38 (1980), 153-158. DOI 10.4064/ap-38-2-153-158 | MR 0599239
[4] I. Marek: Iterations of linear bounded operators in non self-adjoint eigenvalue problems and Kellogg's iteration process. Czechoslovak Math. J. 12 (1962), 536-554. MR 0149297 | Zbl 0192.23701
Partner of
EuDML logo