Previous |  Up |  Next

Article

Title: Time-dependent invariant regions for parabolic systems related to one- dimensional nonlinear elasticity (English)
Author: Feireisl, Eduard
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 35
Issue: 3
Year: 1990
Pages: 184-191
Summary lang: English
.
Category: math
.
Summary: A parabolic system arisng as a viscosity regularization of the quasilinear one-dimensional telegraph equation is considered. The existence of $L \infty$ - a priori estimates, independent of viscosity, is shown. The results are achieved by means of generalized invariant regions. (English)
Keyword: invariant region
Keyword: vanishing viscosity
Keyword: nonlinear parabolic system
Keyword: quasilinear one- dimensional telegraph equation
MSC: 35B35
MSC: 35B45
MSC: 35B65
MSC: 35K45
MSC: 35K55
MSC: 73C50
MSC: 73D35
MSC: 74B20
idZBL: Zbl 0709.73013
idMR: MR1052739
DOI: 10.21136/AM.1990.104402
.
Date available: 2008-05-20T18:39:07Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104402
.
Reference: [1] K. N. Chueh C. C. Conley J. A. Smoller: Positively invariant regions for systems of non linear diffusion equations.Indiana Univ. Math. J. 26 (1977), 372-7411. MR 0430536
Reference: [2] C. M. Dafermos: Estimates for conservation laws with little viscosity.SIAM J. Math. Anal. 18 (1987), 409-421. Zbl 0655.35055, MR 0876280, 10.1137/0518031
Reference: [3] R. J. DiPerna: Convergence of approximate solutions to conservation laws.Arch. Rational Mech. Anal. 82 (1983), 27-70. Zbl 0519.35054, MR 0684413, 10.1007/BF00251724
Reference: [4] M. Rascle: Un résultat de ,,compacité par compensation à coefficients variables". Application à l'élasticité nonlinéaire.Compt. Rend. Acad. Sci. Paris, Série I, 302 (1986), 311 - 314. MR 0838582
Reference: [5] D. Serre: Domaines invariants pour les systèmes hyperboliques de lois de conservation.J. Differential Equations 69 (1987), 46-62. Zbl 0626.35061, MR 0897440, 10.1016/0022-0396(87)90102-1
Reference: [6] D. Serre: La compacité par compensation pour les systèmes hyperboliques non linéaires de deux équations a une dimension d'espace.J. Math. pures et appl. 65 (1986), 423 - 468. MR 0881690
Reference: [7] T. D. Venttseľ: Estimates of solutions of the one-dimensional system of equations of gas dynamics with "viscosity" nondepending on "viscosity".Soviet Math. J., 31 (1985), 3148- --3153. 10.1007/BF02107558
Reference: [8] E. Feireisl: Compensated compactness and time-periodic solutions to non-autonomous quasilinear telegraph equations.Apl. mat. 35 (1990), 192-208. Zbl 0737.35040, MR 1052740
.

Files

Files Size Format View
AplMat_35-1990-3_3.pdf 1.079Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo