Previous |  Up |  Next

Article

Keywords:
telegraph equation; compensated compactness; vanishing viscosity method
Summary:
In the present paper, the existence of a weak time-periodic solution to the nonlinear telegraph equation $U_{tt}+dU_t-\sigma(x,t,U_x)_x+aU=f(x,t,U_x,U_t,U)$ with the Dirichlet boundary conditions is proved. No "smallness" assumptions are made concerning the function $f$. The main idea of the proof relies on the compensated compactness theory.
References:
[1] H. Amann: Invariant sets and existence theorems for semilinear parabolic and elliptic systems. J. Math. Anal. Appl. 65 (1978), 432-467. DOI 10.1016/0022-247X(78)90192-0 | MR 0506318 | Zbl 0387.35038
[2] H. Amann: Periodic solutions of semi-linear parabolic equations. Nonlinear Analysis: A collection of papers in honor of Erich Rothe, Academic Press, New York (1978), 1 - 29. MR 0499089
[3] K. N. Chueh C. C. Conley J. A. Smoller: Positively invariant regions for systems of nonlinear diffusion equations. Indiana Univ. Math. J. 26 (1977), 373 - 392. DOI 10.1512/iumj.1977.26.26029 | MR 0430536
[4] W. Craig: A bifurcation theory for periodic solutions of nonlinear dissipative hyperbolic equations. Ann. Sci. Norm Sup. Pisa Ser. IV- Vol. 10 (1983), 125-167. MR 0713113 | Zbl 0518.35057
[5] R. J. DiPerna: Compensated compactness and general systems of conservation laws. Trans. Amer. Math. Soc. 292 (2) (1985), 383 - 420. DOI 10.1090/S0002-9947-1985-0808729-4 | MR 0808729
[6] R. J. DiPerna: Convergence of approximate solutions to conservation laws. Arch. Rational. Mech. Anal. 82 (1983) 27-70. DOI 10.1007/BF00251724 | MR 0684413 | Zbl 0519.35054
[7] E. Feireisl: Time-dependent invariant regions for parabolic systems related to one-dimensional nonlinear elasticity. Apl. mat. 35 (1990), 184-191. MR 1052739 | Zbl 0709.73013
[8] D. Henry: Geometric theory of semilinear parabolic equations. Lecture Notes in Math. 840, Springer-Verlag (1981). MR 0610244 | Zbl 0456.35001
[9] P. Krejčí: Hard implicit function theorem and small periodic solutions to partial differential equations. Comment. Math. Univ. Carolinae 25 (1984), 519-536. MR 0775567
[10] A. Matsumura: Global existence and asymptotics of the solutions of the second-order quasilinear hyperbolic equations with the first-order dissipation. Publ. RIMS Kyoto Univ. 13, (1977), 349-379. DOI 10.2977/prims/1195189813 | MR 0470507 | Zbl 0371.35030
[11] A. Milani: Global existence for quasi-linear dissipative wave equations with large data and small parameter. Math. Z. 198 (1988), 291 - 297. MR 0939542
[12] A. Milani: Time periodic smooth solutions of hyperbolic quasilinear equations with dissipation term and their approximation by parabolic equations. Ann. Mat. Рurа Appl. 140 (4) (1985), 331-344. DOI 10.1007/BF01776855 | MR 0807643
[13] T. Nishida: Nonlinear hyperbolic equations and related topics in fluid dynamics. Publications Mathématiques D'Orsay 78.02, Univ. Paris Sud (1978). MR 0481578 | Zbl 0392.76065
[14] H. Petzeltová: Applications of Moser's method to a certain type of evolution equations. Czechoslovak Math. J. 33 (1983), 427-434. MR 0718925
[15] H. Petzeltová M. Štědrý: Time periodic solutions of telegraph equations in n spatial variables. Časopis Pěst. Mat. 109 (1984), 60-73. MR 0741209
[16] P. H. Rabinowitz: Periodic solutions of nonlinear hyperbolic partial differential equations II. Comm. Pure Appl. Math. 22 (1969), 15-39. DOI 10.1002/cpa.3160220103 | MR 0236504 | Zbl 0157.17301
[17] M. Rascle: Un résultat de "compacité par compensation à coefficients variables". Application à l'elasticitě non linéaire. C. R. Acad. Sci. Paris 302 Sér. I 8 (1986), 311 - 314. MR 0838582 | Zbl 0606.35054
[18] D. Serre: La compacité par compensation pour lour les systemes hyperboliques non linéaires de deux équations a une dimension d'espace. J. Math. Pures et Appl. 65 (1986), 423 - 468. MR 0881690
[19] M. Slemrod: Damped conservation laws in continuum mechanics. Nonlinear Analysis and Mechanics Vol. III, Pitman New York (1978), 135-173. MR 0539691
[20] M. Štědrý: Small time-periodic solutions to fully nonlinear telegraph equations in more spatial dimensions. (to appear). MR 0995505
[21] L. Tartar: Compensated compactness and applications to partial differential equations. Research Notes in Math. 39, Pitman Press (1975), 136-211. MR 0584398
[22] O. Vejvoda, al.: Partial differential equations: Time periodic solutions. Martinus Nijhoff Publ. (1982). Zbl 0501.35001
Partner of
EuDML logo