Previous |  Up |  Next

Article

Title: On some properties of the solution of the differential equation $u''+\frac{2u'}{r}=u-u^3$ (English)
Author: Šeda, Valter
Author: Pekár, Ján
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 35
Issue: 4
Year: 1990
Pages: 315-336
Summary lang: English
.
Category: math
.
Summary: In the paper it is shown that each solution $u(r,\alpha)$ ot the initial value problem (2), (3) has a finite limit for $r\rightarrow \infty$, and an asymptotic formula for the nontrivial solution $u(r,\alpha)$ tending to 0 is given. Further, the existence of such a solutions is established by examining the number of zeros of two different solutions $u(r,\bar{\alpha})$, $u(r,\hat{\alpha})$. (English)
Keyword: spherically symmetric solution
Keyword: trajectory of the solution
Keyword: со-limit point of the trajectory
Keyword: asymptotic formula
Keyword: antitone and contractive operator
Keyword: zero of the solution
Keyword: Klein-Gordon equation
Keyword: global behavior
MSC: 34A12
MSC: 34C10
MSC: 34D05
MSC: 34E99
MSC: 35Q40
idZBL: Zbl 0719.34058
idMR: MR1065005
DOI: 10.21136/AM.1990.104413
.
Date available: 2008-05-20T18:39:37Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104413
.
Reference: [1] Ch. V. Coffman: Uniqueness of the ground state solution for $\Delta u - u +u^3 = 0$ and a variational characterization of other solutions.Arch. Rational Mech. Anal. 46 (1972), 81 - 95. MR 0333489, 10.1007/BF00250684
Reference: [2] L. Erbe K. Schmitt: On radial solutions of some semilinear elliptic equations.Differential and Integral Equations, Vol. 1 (1988), 71 - 78. MR 0920490
Reference: [3] J. Chauvette F. Stenger: The approximate solution of the nonlinear equation $\Delta u = u - u^3$.J. Math. Anal. Appl. 51 (1975), 229-242. MR 0373320, 10.1016/0022-247X(75)90155-9
Reference: [4] G. H. Ryder: Boundary value problems for a class of nonlinear differential equations.Pacific J. Math. 22 (1967), 477-503. Zbl 0152.28303, MR 0219794, 10.2140/pjm.1967.22.477
Reference: [5] G. Sansone: Su un'equazione differenziale non lineare della fisica nucleare.Istituto Nazionale di Alta Matem. Sympozia Mathematica, Vol. VI, (1970).
.

Files

Files Size Format View
AplMat_35-1990-4_3.pdf 2.865Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo