Previous |  Up |  Next


Title: Shape optimization of an elasto-plastic body for the model with strain- hardening (English)
Author: Pištora, Vladislav
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 35
Issue: 5
Year: 1990
Pages: 373-404
Summary lang: English
Category: math
Summary: The state problem of elasto-plasticity (for the model with strain-hardening) is formulated in terms of stresses and hardening parameters by means of a time-dependent variational inequality. The optimal design problem is to find the shape of a part of the boundary such that a given cost functional is minimized. For the approximate solutions piecewise linear approximations of the unknown boundary, piecewise constant triangular elements for the stress and the hardening parameter, and backward differences in time are used. Existence and uniqueness of a solution of the approximate state problem and existence of a solution of the approximate optimal design problem are proved. The main result is the proof of convergence of the approximations to a solution of the original optimal design problem. (English)
Keyword: domain optimization
Keyword: time-dependent variational inequality
Keyword: elasto-plasiicily
Keyword: finite elements
Keyword: uniqueness
Keyword: state problem
Keyword: optimal design
Keyword: piecewise linear approximations of the unknown boundary
Keyword: hardening parameter
Keyword: backward differences in time
Keyword: convergence
MSC: 49J40
MSC: 65K10
MSC: 65N30
MSC: 73E05
MSC: 73E99
MSC: 73V25
MSC: 73k40
MSC: 74P10
MSC: 74P99
MSC: 74S05
MSC: 74S30
idZBL: Zbl 0717.73054
idMR: MR1072608
Date available: 2008-05-20T18:39:53Z
Last updated: 2015-05-31
Stable URL:
Reference: [1] D. Begis R. Glowinski: Application de la méthode des éléments finis à l'approximation d'un problème de domaine optimal.Appl. Math. Optim. 2 (1975), 130-169. MR 0443372, 10.1007/BF01447854
Reference: [2] J. Céa: Optimization: Théorie et algorithmes.Dunod, Paris, 1971; (in Russian, Mir, Moskva, 1973). MR 0298892
Reference: [3] P. G. Ciarlet: The finite element method for elliptic problems.North Holland Publ. Соmр., Amsterdam, 1978; (in Russian, Mir, Moskva, 1980). Zbl 0383.65058, MR 0608971
Reference: [4] I. Hlaváček: A finite element solution for plasticity with strain-hardening.RAIRO Annal. Numér. 14 (1980), 347-368. MR 0596540
Reference: [5] I. Hlaváček: Optimization of the domain in elliptic problems by the dual finite element method.Apl. Mat. 30 (1985), 50-72. MR 0779332
Reference: [6] I. Hlaváček: Shape optimization of an elastic-perfectly plastic body.Apl. Mat. 32 (1987), 381-400. MR 0909545
Reference: [7] C. Johnson: Existence theorems for plasticity problems.J. Math. Pures Appl. 55 (1976), 431-444. Zbl 0351.73049, MR 0438867
Reference: [8] C. Johnson: A mixed finite element method for plasticity with hardening.SIAM J. Numer. Anal. 14 (1977), 575-583. MR 0489265, 10.1137/0714037
Reference: [9] C. Johnson: On plasticity with hardening.J. Math. Anal. Appl. 62 (1978), 325-336. Zbl 0373.73049, MR 0489198, 10.1016/0022-247X(78)90129-4
Reference: [10] A. Kufner O. John S. Fučík: Function spaces.Academia, Praha, 1977. MR 0482102
Reference: [11] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Praha, 1967. MR 0227584
Reference: [12] I. Hlaváček: Shape optimization of elasto-plastic bodies obeying Hencky's law.Apl. Mat. 31 (1986), 486-499. Zbl 0616.73081, MR 0870484
Reference: [13] I. Hlaváček J. Haslinger J. Nečas J. Lovíšek: Solution of Variational Inequalities in Mechanics.Springer-Verlag, New York, 1988. MR 0952855


Files Size Format View
AplMat_35-1990-5_5.pdf 3.709Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo