Previous |  Up |  Next

Article

Title: The stability of Ritz-Volterra projection and error estimates for finite element methods for a class of integro-differential equations of parabolic type (English)
Author: Lin, Yanping
Author: Zhang, Tie
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 36
Issue: 2
Year: 1991
Pages: 123-133
Summary lang: English
.
Category: math
.
Summary: In this paper we first study the stability of Ritz-Volterra projection (see below) and its maximum norm estimates, and then we use these results to derive some $L^\infty$ error estimates for finite element methods for parabolic integro-differential equations. (English)
Keyword: Ritz-Volterra projection
Keyword: stability
Keyword: finite element
Keyword: error estimates
Keyword: initial- boundary-value problem
Keyword: parabolic Volterra integro-differential equation
MSC: 45K05
MSC: 65M60
MSC: 65N30
MSC: 65R20
idZBL: Zbl 0732.65122
idMR: MR1097696
DOI: 10.21136/AM.1991.104449
.
Date available: 2008-05-20T18:41:11Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104449
.
Reference: [1] J. R. Cannon, Yanping Lin: Non-classical $H^1$ projection and Galerkin methods for nonlinear parabolic integro-differential equations.Calcolo, 25 (1988) 187- 201, MR 1053754, 10.1007/BF02575943
Reference: [2] J. R. Cannon Y. Lin: A priori $L^2$ error estimates for finite element methods for nonlinear diffusion equations with memory.SJAM. J. Numer. Anal., 27 (1990) 595-607. MR 1041253, 10.1137/0727036
Reference: [3] P. G. Ciarlet: The Finite Element Method for Elliptic Problems.North Holland, 1978. Zbl 0383.65058, MR 0520174
Reference: [4] E. Green-Yanik G. Fairweather: Finite element methods for parabolic and hyperbolic partial integro-differential equations.to appear in Nonlinear Analysis. MR 0954953
Reference: [5] M. N. Le Roux V. Thomee: Numerical solution of semilinear integro-differential equations of parabolic type.SIAM J. Numer. Anal., 26 (1989) 1291-1309. MR 1025089, 10.1137/0726075
Reference: [6] Y. Lin V. Thomee L. Wahlbin: A Ritz-Volterra projection onto finite element spaces and application to integro and related equations.to appear in SIAM J. Numer. Anal. MR 1111453
Reference: [7] Qun Lin, Tao Lu, Shu-min Shen: Maximum norm estimate, extrapolation and optimal points of stresses for the finite element methods on the strongly regular triangulalion.J. Соmр. Math., Vol. 1, No. 4 (1983) 376-383. MR 0726394
Reference: [8] Qun Lin, Qi-ding Zhou: Superconvergence Theory of Finite Element Methods.Book to appear.
Reference: [9] J. A. Nitsche: $L_{\infty}$-convergence of finite element Galerkin approximations for parabolic problems.R.A.I.R.O., Vol. 13, No. 1, (1979) 31-51. Zbl 0401.65069, MR 0527037
Reference: [10] R. Rannacher R. Scott: Some optimal error estimates for piecewise linear finite element approximations.Math. Соmр. 38 (1982) 437-445. MR 0645661
Reference: [11] A. H. Schatz V. Thomée L. Wahlbin: Maximum norm stability and error estimates in parabolic finite element equations.Comm. Pur. Appl. Math., XXXIII, (1980) 265-304. MR 0562737
Reference: [12] R. Scott: Optimal $L^{\infty}$ estimates for the finite element on irregular meshes.Math. Соmр., 30 (1976) 681-697. Zbl 0349.65060, MR 0436617
Reference: [13] V. Thomee N. Y. Zhang: Error estimates for semi-discrete finite element methods for parabolic integro-differential equations.Math. Соmр., 53 (1989) 121-139. MR 0969493
Reference: [14] M. F. Wheeler: A priori $L_2$ error estimates for Galerkin methods to parabolic partial differential equations.SIAM J. Numer. Anal. 19 (1973) 723-759. MR 0351124, 10.1137/0710062
.

Files

Files Size Format View
AplMat_36-1991-2_3.pdf 1.162Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo