Previous |  Up |  Next

Article

Title: Shape optimization of elasto-plastic axisymmetric bodies (English)
Author: Hlaváček, Ivan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 36
Issue: 6
Year: 1991
Pages: 469-491
Summary lang: English
.
Category: math
.
Summary: A minimization of a cost functional with respect to a part of a boundary is considered for an elasto-plastic axisymmetric body obeying Hencky's law. The principle of Haar-Kármán and piecewise linear stress approximations are used to solve the state problem. A convergence result and the existence of an optimal boundary is proved. (English)
Keyword: domain optimization
Keyword: control of variational inequalities
Keyword: Hencky's law of elasto-plasticity
MSC: 65K10
MSC: 65N30
MSC: 73E99
MSC: 73V25
MSC: 73k40
MSC: 74B99
MSC: 74C99
MSC: 74P10
MSC: 74S30
idZBL: Zbl 0756.73094
idMR: MR1134923
DOI: 10.21136/AM.1991.104483
.
Date available: 2008-05-20T18:42:44Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104483
.
Reference: [1] G. Duvaut J. L. Lions: Les inéquations en mécanique et en physique.Paris, Dunod 1972. MR 0464857
Reference: [2] R. Falk B. Mercier: Error estimates for elasto-plastic problems.R.A.I.R.O. Anal. Numér. 11 (1977), 135-144. MR 0449119
Reference: [3] I. Hlaváček: Shape optimization of elasto-plastic bodies obeying Hencky's law.Apl. Mat. 31 (1986), 486-499. Zbl 0616.73081, MR 0870484
Reference: [4] I. Hlaváček: Domain optimization of axisymmetric elliptic boundary value problems by finite elements.Apl. Mat. 33 (1988), 213-244. MR 0944785
Reference: [5] I. Hlaváček: Shape optimization of elastic axisymmetric bodies.Apl. Mat. 34 (1989), 225- -245. MR 0996898
Reference: [6] I. Hlaváček M. Křížek: Dual finite element analysis of 3D-axisymmetric elliptic problems.Numer. Anal. Part. Diff. Eqs. (To appear.)
Reference: [7] I. Hlaváček R. Mäkinen: On the numerical solution of axisymmetric domain optimization problems.Appl. Math. 36 (1991), 284-304. MR 1113952
Reference: [8] B. Mercier G. Raugel: Resolution d'un problème aux limites dans un ouvert axisymétrique par élément finis en r, z et séries de Fourier en $\theta$.R.A.I.R.O. Anal. numér. 16 (1982), 405-461. MR 0684832
Reference: [9] O. Pironneau: Optimal Shape Design for Elliptic Systems.Springer-Verlag, New York 1983. MR 0725856
.

Files

Files Size Format View
AplMat_36-1991-6_6.pdf 1.929Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo