Previous |  Up |  Next

Article

Title: An optimal control problem for a pseudoparabolic variational inequality (English)
Author: Bock, Igor
Author: Lovíšek, Ján
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 37
Issue: 1
Year: 1992
Pages: 62-80
Summary lang: English
.
Category: math
.
Summary: We deal with an optimal control problem governed by a pseudoparabolic variational inequality with controls in coefficients and in convex sets of admissible states. The existence theorem for an optimal control parameter will be proved. We apply the theory to the original design problem for a deffection of a viscoelastic plate with an obstacle, where the variable thickness of the plate appears as a control variable. (English)
Keyword: optimal control
Keyword: pseudoparabolic variational inequality
Keyword: convex set
Keyword: penalization
Keyword: viscoelastic plate
Keyword: thickness
Keyword: obstacle
Keyword: elliptic operators
MSC: 47H19
MSC: 49A29
MSC: 49A34
MSC: 49J40
MSC: 73F15
MSC: 73K10
MSC: 73V25
MSC: 73k40
MSC: 74Hxx
idZBL: Zbl 0772.49008
idMR: MR1152158
DOI: 10.21136/AM.1992.104492
.
Date available: 2008-05-20T18:43:06Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104492
.
Reference: [1] V. Barbu: Optimal control of variational inequalities.Pitman, Boston, 1984. Zbl 0574.49005, MR 0742624
Reference: [2] V. Barbu T. Precupanu: Convexity and optimization.Sitjhoff-Noordhoff, Amsterdam, 1978.
Reference: [3] I. Bock J. Lovíšek: Optimal control of a viscoelastic plate bending.Mathematische Nachrichten 125 (1968), 135-151. MR 0847355, 10.1002/mana.19861250109
Reference: [4] I. Bock J. Lovíšek: Optimal control problems for variational inequalities with controls in coefficients and in unilateral constraints.Aplikace matematiky 32 no. 4 (1987), 301-314. MR 0897834
Reference: [5] H. Brézis: Problémes unilatéraux.Journal de Math. Pures. et Appl. 51 (1972), 1-168. MR 0428137
Reference: [6] H. Brézis: Operateurs maximaux monotones et semigroupes.North Holland, Amsterdam, 1973.
Reference: [7] H. Brézis: Analyse fonctionelle.Masson, Paris, 1982.
Reference: [8] J. Brilla: Linear viscoelastic plate bending analysis.Proc. XI-th Congress of applied mechanics, München, 1964.
Reference: [9] E. Di Benedetto R.E.Showalter: A pseudoparabolic variational inequality and Stefan problem.Nonlinear analysis 6 (1982), 279-291. MR 0654319, 10.1016/0362-546X(82)90095-5
Reference: [10] H. Gajewski K. Gröner K. Zacharias: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen.Akademie, Berlin, 1974. MR 0636412
Reference: [11] D. Kinderlehrer G. Stampacchia: An introduction to variational inequalities.Academic Press, New York, 1980. MR 0567696
Reference: [12] K. L. Kuttler, Jr.: Degenerate variational inequalities of evolution.Nonlinear analysis 8 (1984), 837-850. Zbl 0549.49004, MR 0753762, 10.1016/0362-546X(84)90106-8
Reference: [13] J. L. Lions: Quelques méthodes de résolution des problémes aux limites non linéaires.Dunod, Paris, 1969. Zbl 0189.40603, MR 0259693
Reference: [14] U. Mosco: Convergence of convex sets of solutions of variational inequalities.Advances of Math. 3 (1969), 510-585. MR 0298508, 10.1016/0001-8708(69)90009-7
Reference: [15] O. R. Ržanicyn: Teoria polzučesti.Strojizdat, Moskva, 1968.
Reference: [16] L. W. White: Control problems governed by pseudoparabolic partial differential equations.Trans. Amer. Math. Soc. 250 (1979), 235-246. MR 0530053, 10.1090/S0002-9947-1979-0530053-5
Reference: [17] L. W. White: Controlability properties of pseudoparabolic boundary value problems.SIAM J. of Control and Optim. 18 no. 5 (1980), 534-539. MR 0586169, 10.1137/0318039
.

Files

Files Size Format View
AplMat_37-1992-1_6.pdf 1.618Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo