Previous |  Up |  Next

Article

Title: Weight minimization of elastic bodies weakly supporting tension. I. Domains with one curved side (English)
Author: Hlaváček, Ivan
Author: Křížek, Michal
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 37
Issue: 3
Year: 1992
Pages: 201-240
Summary lang: Czech
.
Category: math
.
Summary: Shape optimization of a two-dimensional elastic body is considered, provided the material is weakly supporting tension. The problem generalizes that of a masonry dam subjected to its own weight and to the hydrostatic presure. Existence of an optimal shape is proved. Using a penalty method and finite element technique, approximate solutions are proposed and their convergence is analyzed. (English)
Keyword: existence
Keyword: masonry dam
Keyword: hydrostatic pressure
Keyword: penalty method
Keyword: convergence
Keyword: shape optimization
Keyword: weight minimization
Keyword: finite elements
MSC: 49Q10
MSC: 65K10
MSC: 65N30
MSC: 73C99
MSC: 73V20
MSC: 73k40
MSC: 74P10
MSC: 74P99
MSC: 74S05
MSC: 74S30
idZBL: Zbl 0767.73047
idMR: MR1157456
DOI: 10.21136/AM.1992.104504
.
Date available: 2008-05-20T18:43:38Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104504
.
Reference: [1] G. Anzellotti: A class of non-coercive functionals and masonry-like materials.Ann. Inst. H. Poincaré 2 (1985), 261-307. MR 0801581, 10.1016/S0294-1449(16)30398-5
Reference: [2] S. Bennati A. M. Genai C. Padovani: Trapezoidal gravity dams in pure compression.CNUCE - C.N.R., Internal Rep. C88-22, May 1988.
Reference: [3] S. Bennati M. Lucchesi: The minimal section of a triangular masonry dam.Мессаniса J. Ital. Assoc. Theoret. Appl. Mech. 23 (1988), 221-225.
Reference: [4] R. A. Brockman: Geometric sensitivity analysis with isoparametric finite elements.Comm. Appl. Numer. Methods 3 (1987), 495-499. Zbl 0623.73081, MR 0937760, 10.1002/cnm.1630030609
Reference: [5] M. Giaquinta G. Giusti: Researches on the equilibrium of masonry structures.Arch. Rational Mech. Anal. 88 (1985), 359-392. MR 0781597, 10.1007/BF00250872
Reference: [6] I. Hlaváček: Optimization of the shape of axisymmetric shells.Apl. Mat. 28 (1983), 269-294. MR 0710176
Reference: [7] I. Hlaváček: Inequalities of Korn's type, uniform with respect to a class of domains.Apl. Mat. 34 (1989), 105-112. Zbl 0673.49003, MR 0990298
Reference: [8] I. Hlaváček R. Mäkinen: On the numerical solution of axisymmetric domain optimization problems.Appl. Math. 36 (1991), 284-304. MR 1113952
Reference: [9] J. Nečas I. Hlaváček: Mathematical Theory of Elastic and Elasto-Plastic Bodies. An Introduction.Elsevier, Amsterdam, 1981. MR 0600655
Reference: [10] O. Pironneau: Optimal Shape Design for Elliptic Systems.Springer-Verlag, New York, 1983. MR 0725856
.

Files

Files Size Format View
AplMat_37-1992-3_4.pdf 2.800Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo