Previous |  Up |  Next

Article

Title: Optimal design of laminated plate with obstacle (English)
Author: Lovíšek, Ján
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 37
Issue: 5
Year: 1992
Pages: 321-342
Summary lang: English
.
Category: math
.
Summary: The aim of the present paper is to study problems of optimal design in mechanics, whose variational form is given by inequalities expressing the principle of virtual power in its inequality form. The elliptic, linear symmetric operators as well as convex sets of possible states depend on the control parameter. The existence theorem for the optimal control is applied to design problems for an elastic laminated plate whose variable thickness appears as a control variable. (English)
Keyword: optimal control
Keyword: variational inequality
Keyword: convex set
Keyword: laminated plate
Keyword: thickness-function
Keyword: rigid obstacle
Keyword: optimal design in mechanics
Keyword: elastic laminate plate
MSC: 49A27
MSC: 49A29
MSC: 49A34
MSC: 49J40
MSC: 49J45
MSC: 49N70
MSC: 49N75
MSC: 49Q10
MSC: 49Q20
MSC: 73K10
MSC: 74K20
MSC: 74M05
idZBL: Zbl 0780.49027
idMR: MR1175928
DOI: 10.21136/AM.1992.104514
.
Date available: 2008-05-20T18:44:03Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104514
.
Reference: [1] R. A. Adams: Sobolev spaces.Academic Press, New York, San Francisco, London, 1975. Zbl 0314.46030, MR 0450957
Reference: [2] J. P. Aubin: Applied functional analysis.John Wiley-Sons, New York, 1979. Zbl 0424.46001, MR 0549483
Reference: [3] V. Barbu: Optimal control of variational inequalities.Pitman Advanced Publishing, Boston, London, Melbourne, 1984. Zbl 0574.49005, MR 0742624
Reference: [4] M. P. Bendsøe J. Sokolowski: Sensitivity analysis and optimal design of elastic plates with unilateral point supports.Mech. Struct. Mach. 15 no. 3 (1987), 383-393. MR 0957853, 10.1080/08905458708905125
Reference: [5] W. Becker: A complex potential method for plate problems with bending extension coupling.Archive of Appl. Mech. 61 (1991), 318-326. Zbl 0825.73293, 10.1007/BF00787600
Reference: [6] G. Duvaut J. L. Lions: Inequalities in mechanics and physics.Springer-Verlag, Berlin,. 1975. MR 0521262
Reference: [7] I. Hlaváček J. Nečas: On inequalities of Korn's type.Arch. Ratl. Mech. Anal. 36 (1970), 305-311. MR 0252844, 10.1007/BF00249518
Reference: [8] J. Haslinger P. Neittaanmäki: Finite element and approximation for optimal shape design. Theory and application.J. Wiley, 1988. MR 0982710
Reference: [9] I. Hlaváček I. Bock J. Lovíšek: Optimal control of a variational inequality with applications to structural analysis II. Local optimalization of the stress in a beam. III. Optimal design of elastic plate.Appl. Math. Optim. 13 (1985), 117-136. MR 0794174, 10.1007/BF01442202
Reference: [10] I. Hlaváček I. Bock J. Lovíšek: On the solution of boundary value problems for sandwich plates.Aplikace matematiky 31 no. 4 (1986), 282-292. MR 0854322
Reference: [11] D. Kinderlehrer G. Stampacchia: An introduction to variational inequalities and their applications.Academic Press, 1980. MR 0567696
Reference: [12] T. Lewinski J. J. Telega: Homogenization and effective properties of plates weakened by partially penetrating fissures: Asymptotic analysis.Int. Engng Sci. 29 no. 9 (1991), 1129-1155. MR 1124050
Reference: [13] J. L. Lions: Optimal control of system governed by partial differential equations.Springer-Verlag, Berlin, 1971. MR 0271512
Reference: [14] V. C. Litvinov: Optimal control of elliptic boundary value problems with applications to mechanics.Nauka, Moskva, 1977. (In Russian.)
Reference: [15] R. Mignot: Controle dans les inéquations variationelles elliptiques.Journal of Functional Analysis 22 (1976), 130-185. Zbl 0364.49003, MR 0423155, 10.1016/0022-1236(76)90017-3
Reference: [16] R. Mignot J. O. Puel: Optimal control in some variational inequalities.SIAM Journal on Control and Optimization 22 (1984), 466-276. MR 0739836, 10.1137/0322028
Reference: [17] U. Mosco: Convergence of convex sets and of solutions of variational inequalities.Advances of Math. 3 (1969), 510-585. Zbl 0192.49101, MR 0298508, 10.1016/0001-8708(69)90009-7
Reference: [18] U. Mosco: On the continuity of the Young-Fenchel transform.Journal of Math. Anal. and Appl. 35 (1971), 518-535. Zbl 0253.46086, MR 0283586, 10.1016/0022-247X(71)90200-9
Reference: [19] P. D. Panagiotopoulos: Inequality problems in mechanics and applications, Convex and nonconvex energy functions.Birkhäuser-Verlag, Boston-Basel-Stuttgart, 1985. Zbl 0579.73014, MR 0896909
Reference: [20] H. Reismann: Elastic plates. Theory and applications.John Wiley, Sons, New York, 1988.
Reference: [21] T. Tiihonen: Abstract approach to a shape design problem for variational inequalities.University of Jyväskylä, Finland.
Reference: [22] J. P. Yvon: Etude de quelques probléms de controle pour des systems distribués.These de doctorat d'Etat, Universitete Paris VI, 1973.
Reference: [23] S. Shuzhong: Optimal control of a strongly monotone variational inequalities.SIAM Journal Control and Optimization 26 no. 2, March (1988). MR 0929802
.

Files

Files Size Format View
AplMat_37-1992-5_1.pdf 3.040Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo