Previous |  Up |  Next

Article

Title: Multipolar viscoelastic materials and the symmetry of the coefficients of viscosity (English)
Author: Šilhavý, Miroslav
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 37
Issue: 5
Year: 1992
Pages: 383-400
Summary lang: English
.
Category: math
.
Summary: The integral constitutive equations of a multipolar viscoelastic material are analyzed from the thermodynamic point of view. They are shown to be approximated by those of the differential-type viscous materials when the processes are slow. As a consequence of the thermodynamic compatibility of the viscoelastic model, the coefficients of viscosity of the approximate viscous model are shown to have an Onsager-type symmetry. This symmetry was employed earlier in the proof of the existence of solutions for the corresponding equations. (English)
Keyword: multipolar materials
Keyword: hereditary laws
Keyword: Onsager's relations
Keyword: integral constitutive equations
Keyword: differential-type viscous materials
Keyword: thermodynamic compatibility
Keyword: Onsager-type symmetry
MSC: 73B05
MSC: 73B25
MSC: 73B30
MSC: 73F99
MSC: 74A15
MSC: 74A20
MSC: 74D99
MSC: 76A10
idZBL: Zbl 0770.73031
idMR: MR1175932
DOI: 10.21136/AM.1992.104518
.
Date available: 2008-05-20T18:44:15Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104518
.
Reference: [1] H. Bellout F. Bloom C. Gupta: Existence and stability of velocity profiles for Couette flow of a bipolar fluid.to appear.
Reference: [2] J. L. Bleustein A. E. Green: Dipolar fluids.Int. J. Engng. Sci. 5 (1967), 323-340. 10.1016/0020-7225(67)90041-9
Reference: [3] K. Bucháček: Thermodynamics of monopolar continuum of grade n.Apl. Mat. 16 (1971), 370-383. MR 0290662
Reference: [4] B. D. Coleman W. Noll: An approximation theorem for functionals, with applications toin continuum mechanics.Arch. Rational Mech. Anal. 6 (1960), 355-370. MR 0119598, 10.1007/BF00276168
Reference: [5] A. E. Green R. S. Rivlin: Simple force and stress multipoles.Arch. Rational Mech. Anal. 16 (1964), 325-354. MR 0182191, 10.1007/BF00281725
Reference: [6] A. E. Green R. S. Rivlin: Multipolar continuum mechanics.Arch. Rational Mech. Anal. 17 (1964), 113-147. MR 0182192, 10.1007/BF00253051
Reference: [7] S. R. de Groot P. Mazur: Non-Equilibrium Thermodynamics.North-Holland, Amsterodam, 1962.
Reference: [8] M. E. Gurtin W. J. Hrusa: On the thermodynamics of viscoelastic materials of single-integral type.Quart. Appl. Math. 49 (1991), 67-85. MR 1096233, 10.1090/qam/1096233
Reference: [9] J. Nečas A. Novotný M. Šilhavý: Global solution to the ideal compressible heat conductive multipolar fluid..Comment. Math. Univ. Carolinae 30 (1989), 551-564. MR 1031872
Reference: [10] J. Nečas A. Novotný, M, Šilhavý: Global solution to the compressible isothermal multipolar fluid.J. Math. Anal. Appl. 162 (1991), 223-241. MR 1135273, 10.1016/0022-247X(91)90189-7
Reference: [11] J. Nečas M. Růžička: Global solution to the incompressible viscous-multipolar material.to appear.
Reference: [12] J. Nečas M. Šilhavý: Multipolar viscous fluids.Quart. Appl. Math. 49 (1991), 247-265. MR 1106391, 10.1090/qam/1106391
Reference: [13] A. Novotný: Viscous multipolar fluids-physical background and mathematical theory.Progress in Physics 39 (1991). MR 1184232
Reference: [14] M. Šilhavý: A note on Onsager's relations.to appear Quart. Appl. Math. Zbl 0809.73014, MR 1292198
.

Files

Files Size Format View
AplMat_37-1992-5_5.pdf 1.914Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo