Previous |  Up |  Next

Article

Title: On variance of the two-stage estimator in variance-covariance components model (English)
Author: Volaufová, Júlia
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 38
Issue: 1
Year: 1993
Pages: 1-9
Summary lang: English
.
Category: math
.
Summary: The paper deals with a linear model with linear variance-covariance structure, where the linear function of the parameter of expectation is to be estimated. The two-stage estimator is based on the observation of the vector $Y$ and on the invariant quadratic estimator of the variance-covariance components. Under the assumption of symmetry of the distribution and existence of finite moments up to the tenth order, an approach to determining the upper bound for the difference in variances of the estimators is proposed, which uses the estimated covariance matrix instead of the real one. (English)
Keyword: two-stage estimator
Keyword: symmetrically distributed estimator
Keyword: unbiased estimator
Keyword: linear variance- covariance structure
Keyword: invariant quadratic estimator of the variance-covariance components
Keyword: finite moments up to the tenth order
Keyword: estimated covariance matrix
MSC: 62F10
MSC: 62J05
MSC: 62J10
idZBL: Zbl 0774.62075
idMR: MR1202075
DOI: 10.21136/AM.1993.104529
.
Date available: 2008-05-20T18:44:43Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104529
.
Reference: [1] F. J. H. Don, J.R. Magnus: On the unbiasedness of iterated GLS estimators.Commun. Statist.-Theory Meth. A9(5) (1980), 519-527. Zbl 0432.62045, MR 0561552, 10.1080/03610928008827898
Reference: [2] R.N. Kackar, D. A. Harville: Unbiasedness of two-stage estimation and prediction procedures for mixed linear models.Commun. Statist.-Theory Meth. A10(3) (1981), 1249-1261. Zbl 0473.62055, MR 0625025, 10.1080/03610928108828108
Reference: [3] N.C. Kakwani: The unbiasedness of Zellner's seemingly unrelated regression equations estimators.Journal of the American Statistical Association 67 (1967), 141-142. Zbl 0152.37201, MR 0215439, 10.1080/01621459.1967.10482895
Reference: [4] C.G. Khatri, K.R. Shah: On the unbiased estimation of fixed effects in a mixed model for growth curves.Commun. Statist.-Theory Meth. A 10(4) (1980), 401-406. MR 0612404, 10.1080/03610928108828046
Reference: [5] J. Kleffe: Simultaneous estimation of expectation and covariance matrix in linear models.Math. Operationsforsch. Statist., Series Statistics 9(3) (1978), 443-478. Zbl 0415.62026, MR 0522072
Reference: [6] L. Kubáček: Foundations of Estimation Theory.Volume 9 of Fundamental Studies in Engineering, first edition, Elsevier, Amsterdam, Oxford, New York, Tokyo, 1988. MR 0995671
Reference: [7] C. R. Rao: Linear Statistical Inference and Its Applications.John VViley, New York, first edition, 1973. Zbl 0256.62002, MR 0346957
Reference: [8] C. R. Rao, S. K. Mitra: Generalized Inverse of Matrices and Its Applications.first edition, John Wiley &; Sons, New York, London, Sydney, Toronto, 1971. Zbl 0236.15005, MR 0338013
Reference: [9] J. Seely, R. V. Hogg: Symmetrically distributed and unbiased estimators in linear models.Commun. Statist.-Theory Meth. A 11(7) (1982), 721-729. Zbl 0516.62053, MR 0651607, 10.1080/03610928208828266
Reference: [10] J. Volaufová V. Witkovský, and M. Bognárová: On the confidence region of parameter of mean in mixed linear models.Poster at European meeting of Statisticians, Berlin, August 1988.
.

Files

Files Size Format View
AplMat_38-1993-1_1.pdf 944.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo