Previous |  Up |  Next

Article

Title: A WKB analysis of the Alfvén spectrum of the linearized magnetohydrodynamics equations (English)
Author: Núñez, Manuel
Author: Rojo, Jesús
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 38
Issue: 1
Year: 1993
Pages: 23-38
Summary lang: English
.
Category: math
.
Summary: Small perturbations of an equilibrium plasma satisfy the linearized magnetohydrodynamics equations. These form a mixed elliptic-hyperbolic system that in a straight-field geometry and for a fixed time frequency may be reduced to a single scalar equation div$\left(A_1\Delta_u\right) + A_2u =0$, where $A_1$ may have singularities in the domaind $U$ of definition. We study the case when $U$ is a half-plane and $u$ possesses high Fourier components, analyzing the changes brought about by the singularity $A_1 = \infty$. We show that absorptions of energy takes place precisely at this singularity, that the solutions have a near harmonic character, and the integrability characteristics of the boundary data are kept throughout $U$. (English)
Keyword: magnetohydrodynamics
Keyword: Alfvén waves
Keyword: Fourier analysis
Keyword: singularity
Keyword: small perturbations
Keyword: equilibrium plasma
Keyword: mixed elliptic-hyperbolic system
MSC: 34E05
MSC: 34E20
MSC: 35Q35
MSC: 35Q60
MSC: 76W05
idZBL: Zbl 0778.76100
idMR: MR1202078
DOI: 10.21136/AM.1993.104532
.
Date available: 2008-05-20T18:44:52Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104532
.
Reference: [1] Grad H.: .Phys. Today 22 (1969), 34. Zbl 0181.28501
Reference: [2] Chen L., Hasegawa A.: Plasma heating by spatial resonance of Alfvén wave.Phys. of Fluids 17(1974), 1399-1403. 10.1063/1.1694904
Reference: [3] Tataronis J., Talmadge J. N., Shohet J. L.: Alfvén wave heating in general toroidal geometry.Univ. of Wisconsin Report (1978).
Reference: [4] Chen L., Hasegawa A.: Steady State excitation of field line resonance.J. of Geoph. Res. 79 (1974), 1024-1037. 10.1029/JA079i007p01024
Reference: [5] Kivelson M. G., Southwood D. J.: Resonant ULF waves: A new interpretation.Geoph. Res. Letters 12 (1985), 49-52. 10.1029/GL012i001p00049
Reference: [6] Freidberg J. P.: Ideal Magnetohydrodynamic theory of magnetic fusion systems.Rev. of Modern Phys. 54 (1982), 801-902. 10.1103/RevModPhys.54.801
Reference: [7] Tataronis J. A.: Energy absorption in the continuous spectrum of ideal Magnetohydrodynamics.J. Plasma Phys. 13 (1975), 87-105. 10.1017/S0022377800025897
Reference: [8] Sedlacek Z.: Electrostatic oscillations in cold inhomogeneous plasma.J. Plasma Phys. 5 (1971), 239-263. 10.1017/S0022377800005754
Reference: [9] Grossmann W.,Tataronis J. A.: Decay of MHD waves by phase mixing II: the Theta-Pinch in cylindrical geometry.Z. Physik 261 (1973), 217-236. 10.1007/BF01391914
Reference: [10] Bender C. M., Orszag S. A.: Advanced Mathematical Methods for Scientist and Engineers.McGraw-Hill, 1984. MR 0538168
Reference: [11] Olver F. W. J.: Asymptotics and Special Functions.Academic Press, 1974. Zbl 0308.41023, MR 0435697
Reference: [12] Stein E. M., Weiss G.: Introduction to Fourier Analysis on Euclidean Spaces.Princeton University Press, 1975. MR 0304972
.

Files

Files Size Format View
AplMat_38-1993-1_4.pdf 1.478Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo