Previous |  Up |  Next

Article

Title: Variations on the Gram-Schmidt and the Huang algorithms for linear systems: A numerical study (English)
Author: Spedicato, Emilio
Author: Vespucci, Maria Teresa
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 38
Issue: 2
Year: 1993
Pages: 81-100
Summary lang: English
.
Category: math
.
Summary: In this paper we compare the numerical performance on a set of ill conditioned problems of several algorithms for linear systems based upon the explicit QR factorization and the implicit LQ factorization associated with the Huang and the modified Huang algorithms in the ABS class. The results indicate that the modified Huang algorithm is generally more accurate than the Huang algorithm and competitive with commercial codes based upon the QR factorization with Householder of Givens reflections. The best version of the modified Huang algorithm performs similarly, as theoretically expected, to the doubly iterated Gram-Schmidt method of Daniel et al., applied on the rows to generate search vectors. (English)
Keyword: ABS methods
Keyword: Huang algorithm
Keyword: QR algorithm
Keyword: Gram-Schmidt orthogonalization
Keyword: ill-conditioned equations
Keyword: numerical experiments
MSC: 65F05
MSC: 65F10
idZBL: Zbl 0783.65029
idMR: MR1202746
DOI: 10.21136/AM.1993.104537
.
Date available: 2008-05-20T18:45:05Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104537
.
Reference: [1] Abaffy J.: Equivalence of a generalization of Sloboda's algorithm with a subclass of the generalized ABS algorithm for linear systems.Quaderno DMSIA I/88(1988), University of Bergamo.
Reference: [2] Abaffy J., Broyden C. G., Spedicato E.: A class of direct methods for linear equations.Numerische Mathematik 45 (1984), 361-376. MR 0769246, 10.1007/BF01391414
Reference: [3] Abaffy J., Galántai A.: Conjugate direction methods for linear and nonlinear systems of algebraic equations.Colloquia Mathematica Societatis János Bolyai 50 (1986), 481-502. MR 0935191
Reference: [4] Abaffy J., Galántai A., Spedicato E.: The local convergence of ABS methods for nonlinear algebraic systems.Numerische Mathematik 51 (1987a), 429-439. MR 0902099, 10.1007/BF01397545
Reference: [5] Abaffy J., Galántai A., Spedicato E.: Application of ABS class to unconstrained function minimization.Quaderno DMSIA 14/77 (1987b), University of Bergamo.
Reference: [6] Abaffy J., Spedicato E.: A generalization of the ABS algorithm for linear systems.Quaderno DMSlA 4/85 (1985), University of Bergamo.
Reference: [7] Abaffy J., Spedicato E.: Numerical experiments with the symmetric algorithm in the ABS class for linear systems.Optimization 18(2) (1987), 197-212. Zbl 0616.65032, MR 0871792, 10.1080/02331938708843232
Reference: [8] Abaffy J., Spedicato E.: ABS projection algorithms: mathematical techniques for linear and nonlinear equations.Ellis Horwood, Chichester, 1989. Zbl 0691.65022, MR 1015928
Reference: [9] Broyden C. G.: On the numerical stability of Huang's update.Quaderno DMSIA 18/89 (1989), University of Bergamo. Zbl 0711.65021
Reference: [10] Daniel J., Gragg W. B., Kaufman L., Stewart G. W.: Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization.Mathematics of Computation 30 (1976), 772-795. Zbl 0345.65021, MR 0431641
Reference: [11] Deng N. Y., Spedicato E.: Optimal conditioning parameter selection in the ABS class through a rank two update formulation.Quaderno DMSIA 18/88 (1988), University of Bergamo.
Reference: [12] Hoffmann W.: Iterative algorithms for Gram-Schmidt orthogonalization.Computing 41 (1989), 335-348. Zbl 0667.65037, MR 0993829, 10.1007/BF02241222
Reference: [13] Huang H. Y.: A direct method for the general solution of a system of linear equations.Journal of Optimization Theory and Applications 16 (1975), 429-445. Zbl 0291.90038, MR 0400678, 10.1007/BF00933852
Reference: [14] More J. J., Cosnard M. Y.: Numerical solution of nonlinear equations.ACM Trans. 5 (1979), 64-85. Zbl 0393.65019, MR 0520748
Reference: [15] Rutishauser H.: On test matrices.Progrès en Mathématiques Numériques (M. Kuntzmann, eds.), Editions de la Faculté de Science de Besançon, 1968. Zbl 0209.17502, MR 0232536
Reference: [16] Sloboda F.: A parallel projection method for linear algebraic systems.Apl. Mat. Českosl. Akad. Ved 25 (1978), 185-198. Zbl 0398.65013, MR 0490260
Reference: [17] Spedicato E.: Optimal conditioning parameter selection in the ABS class for linear systems.Report 203, Mathematische Institute, University of Würzburg, 1987.
Reference: [18] Spedicato E., Vespucci M. T.: Variations on the Gram-Schmidt and the Huang algorithms for linear systems: a numerical study.Quaderno DMSIA 21/89(1989), University of Bergamo.
Reference: [19] Yang Z.: On the numerical stability of the Huang and the modified Huang algorithms and related topics.Collection of reports on the ABS class of algorithms, 5, Department of Applied Mathematics, Dalian University of Technology, 1988.
Reference: [20] Zielke G.: Report on test matrices for generalized inverses.Computing 36 (1986), 105-162. Zbl 0566.65026, MR 0832934, 10.1007/BF02238196
.

Files

Files Size Format View
AplMat_38-1993-2_1.pdf 1.926Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo