Previous |  Up |  Next

Article

Title: On modification of Samoilenko's numerical-analytic method of solving boundary value problems for difference equations (English)
Author: Kwapisz, Marian
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 38
Issue: 2
Year: 1993
Pages: 133-144
Summary lang: English
.
Category: math
.
Summary: In the paper a modification of Samoilenko's numerical analytic method is adapted for solving of boundary value problems for difference equation. Similarly to the case of differential equations it is shown that the considered modification of the method requires essentially less restrictive condition-then the original method-for existence and uniqueness of solution of auxiliary equations which play a crucial role in solving the boundary value problems for difference equations. (English)
Keyword: difference equations
Keyword: boundary value problems
Keyword: numerical methods
Keyword: method of successive approximations
MSC: 39A10
MSC: 39A70
MSC: 65Q05
idZBL: Zbl 0786.65116
idMR: MR1202749
DOI: 10.21136/AM.1993.104540
.
Date available: 2008-05-20T18:45:15Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104540
.
Reference: [1] R. P. Agarval: On multipoint boundary value problems for discrete equations.J. Math. Anal. Appl. 96(1983), 520-534. MR 0719333
Reference: [2] R. P. Agarval: Initial-value methods for discrete boundary value problems.J. Math. Anal. Appl. 100 (1984), 513-529. MR 0743339, 10.1016/0022-247X(84)90099-4
Reference: [3] R. P . Agarval R. C. Gupta: A new shooting method for multi-point boundary value problems.J. Math. Anal. Appl. 112 (1985), 210-220. MR 0812803, 10.1016/0022-247X(85)90286-0
Reference: [4] A. Augustynowicz M. Kwapisz: On a numerical-analytic method of solving of boundary value problem for functional-differential equation of neutral type.Mathem. Nachrichten 145 (1990), 255-269. MR 1069034, 10.1002/mana.19901450120
Reference: [5] P. W. Eloe: A boundary value problem for a system of difference equations.Nonlinear Anal. 7 (1983), 813-820. Zbl 0518.39002, MR 0709036, 10.1016/0362-546X(83)90059-7
Reference: [6] J. Henderson: Existence theorems for boundary value problems for nth order nonlinear difference equations.SIAM J. Math. Anal. 20 (1989), 468-478. Zbl 0671.34017, MR 0982673, 10.1137/0520032
Reference: [7] M. Kwapisz: Some existence and uniqueness results for boundary value problems for difference equations.Applicable Analysis 37 (1990), 169-182. Zbl 0678.39001, MR 1116165, 10.1080/00036819008839945
Reference: [8] M. Kwapisz: On boundary value problems for difference equations.J. Math. Anal. Appl. 157 (1991), 254-270. Zbl 0729.39001, MR 1109455, 10.1016/0022-247X(91)90148-S
Reference: [9] M. Kwapisz: Some remarks on integral equations arising in applications of numerical-analytic method of solving of boundary value problems.Ukrain. Mathem. Journal (44)1 (1992), 128-132. MR 1185068
Reference: [10] M. Kwapisz: On modifications of the integral equation of Samoilenko's numerical- analytic method of solving boundary value problems.Math. Nachr. 157(1992), 125-135. MR 1233052, 10.1002/mana.19921570126
Reference: [11] M. Kwapisz: Elements of the Theory of Recurrent Equations.The Gdańsk University Publications, Gdańsk, 1983. (In Polish.)
Reference: [12] V. Lakshmikantham D. Trigiante: Theory of Difference Equations.Numerical Methods and Applications, Academic Press, New York, 1988. MR 0939611
Reference: [13] R. Musielak J. Popenda: On periodic solutions of a first order difference equation.Anale Stiintifice Ale Universitatii "Al. I. Cuza" Din Iasi, 34, s. I a, Matematica 2 (1988), 125-133. MR 0995496
Reference: [14] A. Peterson: Boundary value problems for an nth order linear difference equation.SIAM J. Math. Anal. 15 (1984), 124-132. Zbl 0532.39001, MR 0728687, 10.1137/0515008
Reference: [15] A. Peterson: Existence and uniqueness theorems for nonlinear difference equations.J. Math. Anal. Appl. 125 (1987), 185-191. Zbl 0625.39002, MR 0891358, 10.1016/0022-247X(87)90173-9
Reference: [16] Y. Rodriguez: On nonlinear discrete boundary value problems.J. Math. Anal. Appl. 114 (1986), 398-408. Zbl 0681.39002, MR 0833595, 10.1016/0022-247X(86)90092-2
Reference: [17] A. M. Samoilenko: Numerical-analytic method of investigation of systems of ordinary differential equations, I.Ukrain. Math. Journal 17 (1965), 82-93. (In Russian.) MR 0195266
Reference: [18] A. M. Samoilenko: Numerical-analytic method of investigation of systems of ordinary differential equations, II.Ukrain. Math. Journal 18 (1966), 50-59. (In Russian.) MR 0195267
Reference: [19] A. M. Samoilenko N. I. Ronto: A modification of numerical-analytic method of successive approximations for boundary value problems for ordinary differential equations.Ukrain. Math. Journal 42 (1990), 1107-1116. (In Russian.) MR 1078829
Reference: [20] A. M. Samoilenko N. I. Ronto: Numerical-analytic Method of Investigation of Periodic Solutions.Vyssha Shkola Publications, Kiev, 1976. (In Russian.) MR 0508530
Reference: [21] A. M. Samoilenko N. I. Ronto: Numerical-analytic Method of Investigation of Solutions of Boundary value problems.Naukova Dumka Publications, Kiev, 1986. (In Russian.) MR 0886480
.

Files

Files Size Format View
AplMat_38-1993-2_4.pdf 1.119Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo