Title:
|
An algebraic construction of discrete wavelet transforms (English) |
Author:
|
Kautský, Jaroslav |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
38 |
Issue:
|
3 |
Year:
|
1993 |
Pages:
|
169-193 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Discrete wavelets are viewed as linear algebraic transforms given by banded orthogonal matrices which can be built up from small matrix blocks satisfying certain conditions. A generalization of the finite support Daubechies wavelets is discussed and some special cases promising more rapid signal reduction are derived. (English) |
Keyword:
|
orthogonal transform |
Keyword:
|
wavelet |
Keyword:
|
pyramidal algorithm |
Keyword:
|
discrete wavelets |
Keyword:
|
banded orthogonal matrices |
Keyword:
|
orthogonal wavelets |
Keyword:
|
signal reduction |
MSC:
|
15A04 |
MSC:
|
42C15 |
MSC:
|
65F25 |
MSC:
|
65F30 |
MSC:
|
65T99 |
idZBL:
|
Zbl 0782.65061 |
idMR:
|
MR1218024 |
DOI:
|
10.21136/AM.1993.104545 |
. |
Date available:
|
2008-05-20T18:45:27Z |
Last updated:
|
2020-07-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/104545 |
. |
Reference:
|
[1] I. Daubechies: Orthonormal bases of compactly supported wavelets.Comm. Pure Appl. Math. 41 (1988), 909-996. Zbl 0644.42026, MR 0951745, 10.1002/cpa.3160410705 |
Reference:
|
[2] S. Mallat: A theory for multiresolution signal decomposition: The wavelet representation.IEEE Trans. Pattern Anal, and Machine Intell. 11 (1989), 674-693. Zbl 0709.94650, 10.1109/34.192463 |
Reference:
|
[3] Y. Meyer: Ondelettes et Opèrateurs.Hermann, Paris, 1990. Zbl 0745.42011, MR 1085487 |
Reference:
|
[4] G. Strang: Wavelets and dilation equations: A brief introduction.SIAM Review 31(4) (1989), 614-627. Zbl 0683.42030, MR 1025484, 10.1137/1031128 |
. |