[1] L. Danzer B. Grünbaum V.  Klee. : Helly's theorem and its relatives. Proceedings of Symposia in Pure Math., Vol. VII. Convexity.
[2] M. Davis M. Maschler. : 
Existence of stable payoff configurations foг cooperative games. Bull. Amer. Math. Soc. 69 (1963), 106-108. 
MR 0144791[3] S. Eilenberg D. Montgomeгy. : 
Fixed point theorems for multi-valued transformations. Amer. J. Math. 68 (1946), 214-222. 
MR 0016676[4] S. Kakutani. : 
A generalization of Brouwer's fixed point theorem. Duke Math. J. Vol. 8, (1941), 457-459. 
MR 0004776 | 
Zbl 0061.40304[5] S. Karlin. : Mathematical methods and theory in games, programming and economics. London-Paris 1959.
[8] B. Peleg. : 
Existence theoгem foг the bargaining set $M_1^{(i)}$. Bull. Amer. Math. Soc. 69 (1963), 109-110. 
MR 0144792[9] B. Peleg. : 
The independence of game theory of utility theory. Bull. Amer. Math. Soc. 72 (1966), 995-999. 
MR 0215623 | 
Zbl 0149.17004[11] L. S. Shapley: 
Equilibrium points in games with vector payoffs. Naval Research Logistic Quarterly 6 (1959), 67-61. 
MR 0109748