[1] K. GÖDEL: The Consistency of the Axiom of Choice... Princeton University Press, 2nd printing 1951.
[2] P. HÁJEK: 
Syntactic models of axiomatic theories. Bull. Acad. Polon. Sci. 13 (1965), No 4, 273-278. 
MR 0184857[3] A. HAJNAL: 
On a consistency theorem connected with the generalized continuum problem. Acta Math. Acad. Sci. Hungar. 12 (1961), 321-376. 
MR 0150046 | 
Zbl 0102.25001[4] A. LÉVY: 
A generalization of Gödel's notion of constructibility. Journ. Symb. Logic 25 (1960), No 2, 147-155. 
MR 0142468 | 
Zbl 0119.25204[5] A. LÉVY: Measurable cardinals and the continuum hypothesis. Notices Amer. Math. Soc. 11 (1964), No 7, iss. 78, 769.
[6] K. PŘÍKRÝ: 
The consistency of the continuum hypothesis for the first measurable cardinal. Bull. Acad. Polon. Sci. 13 (1965), No 3, 193-197. 
MR 0181575[7] J. R. SHOENFIELD: 
On the independence of the axiom of constructibility. Amer. Journ. of Math. 81 (1959), 537-540. 
MR 0106833 | 
Zbl 0201.32702[8] R. M. SOLOVAY: 
Measurable cardinals and the continuum hypothesis. (printed thesis), mimeographed. 
Zbl 0289.02044[9] P. VOPĚNKA: 
The limits of sheaves and application on construction of models. Bull. Acad. Polon. Sci. 13 (1965), No 3, 189-192. 
MR 0182570[10] P. VOPĚNKA: 
On $\nabla $-model of set theory. Bull. Acad. Polon. Sci. 13 (1965), No 4, 267-272. 
MR 0182571[11] P. VOPĚNKA: 
Properties of $\nabla $-model. Bull. Acad. Polon. Sci. 13 (1965), No 7, 441-444. 
MR 0189984[12] P. VOPĚNKA: 
$\nabla $-models in which the generalized continuum hypothesis does not hold. Bull. Acad. Polon. Sci. 14 (1966), No 3, 95-99. 
MR 0200142[13] P.VOPĚNKA, P. HÁJEK.: 
Permutation submodels of the model $\nabla $. Bull. Acad. Polon. Sci. 13 (1965), No 9, 611 -614. 
MR 0194320 | 
Zbl 0143.25805[14] P. HÁJEK, P. VOPĚNKA: 
Some permutation submodels of the model $\nabla $. Bull. Acad. Polon. Sci. 14 (1966), No 1, 1-7. 
MR 0194321