Previous |  Up |  Next

Article

Title: The principle of truncations in applied probability (English)
Author: Seneta, Eugene
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 9
Issue: 2
Year: 1968
Pages: 237-242
.
Category: math
.
MSC: 15A06
MSC: 60-90
MSC: 60F99
MSC: 60H99
MSC: 60J10
MSC: 60Jxx
idZBL: Zbl 0243.60038
idMR: MR0235640
.
Date available: 2008-06-05T20:27:56Z
Last updated: 2012-04-27
Stable URL: http://hdl.handle.net/10338.dmlcz/105175
.
Reference: [1] M. FRÉCHET: Théorie des événements en chaine dans le cas d'un nombre fini d'états possible.Gauthier Villars, (1938).
Reference: [2] F. R. GANTMACHER: Applications of the Theory of Matrices.Interscience, (1959). Zbl 0085.01001, MR 0107648
Reference: [3] R. A. HOWARD: Dynamic Programming and Markov Processes.Wlley, (1960). Zbl 0091.16001, MR 0118514
Reference: [4] J. G. KEMENY, SNELL L. J.: Finite Markov Chains.Van Nostrand, (1960). Zbl 0089.13704, MR 0115196
Reference: [5] F. RIESZ: Les Systèmes d'Equations Linéaires a une Infinite-d'Inconnues.Gauthier - Villars, (1913).
Reference: [6] V. I. ROMANOVSKY: Discrete Markov Chains.(Russian) GITTL, (1949).
Reference: [7] T. A. SARYMSAKOV: Elements of the theory of Markov Processes.(Russian) GITTL, (1954). MR 0070094
Reference: [8] E. SENETA: Finite approximations to infinite nonnegative matrices.Proc. Camb. Phil. Soc. 63, (1967), 983-992. x) MR 0217874
Reference: [9] D. VERE, JONES: Geometric ergodicity in denumerable Markov chains.Quart. J. Math. Oxford Ser. 13, (1962), 7-28. Zbl 0104.11805, MR 0141160
.

Files

Files Size Format View
CommentatMathUnivCarol_009-1968-2_4.pdf 512.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo