Previous |  Up |  Next

Article

Title: Solving of nonlinear operators’ equations in Banach space (English)
Author: Fučík, Svatopluk
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 10
Issue: 2
Year: 1969
Pages: 177-188
.
Category: math
.
MSC: 47-80
MSC: 47Hxx
idZBL: Zbl 0188.20901
idMR: MR0257829
.
Date available: 2008-06-05T20:30:04Z
Last updated: 2012-04-27
Stable URL: http://hdl.handle.net/10338.dmlcz/105225
.
Reference: [1] M. ALTMAN: A Fixed-Point Theorem in Hilbert Space.Bull. Acad. Pol. Sci. V (1957), 19-22. Zbl 0077.31902, MR 0087064
Reference: [2] M. ALTMAN: Fixed Point Theorems in Banach space.Bull. Acad. Pol. Sci. V(1957), 89-92. MR 0087063
Reference: [3] M. ALTMAN: On Linear Functional Equations in Hilbert Space.Bull. Acad. Pol. Sci. V (1957), 223-226. MR 0087065
Reference: [4] F. E. BROWDER: Problèmes Non-linéaires.Les Presses de l'Université de Montréal (1966). Zbl 0153.17302
Reference: [5] F. E. BROWDER: Nonlinear Mappings of Nonexpansive and Accretive Type in Banach Space.Bull. Am. Math. Soc. 73 (1967), 875-882. MR 0232255
Reference: [6] F. E. BROWDER D. G. de FIGUEIREDO: $J$-monotone Nonlinear Operators in Banach Spaces.Konkl. Nederl. Acad. Watensch. 69 (1966), 412-420. MR 0205122
Reference: [7] D. G. de FIGUEIREDO: Fixed-Point Theorems for Nonlinear Operators and Galerkin Approximations.Journal Diff. Eq. 3 (1967), 271-281. Zbl 0149.10604, MR 0206761
Reference: [8] D. G. de FIGUEIREDO: Some Remarks on Fixed Point Theorems for Nonlinear Operators in Banach Spaces.Lecture Series, University of Maryland, 1967. Zbl 0176.45403
Reference: [9] D. G. de FIGUEIREDO: Topics in Nonlinear Functional Analysis.Lecture Series, University of Maryland, 1967.
Reference: [10] S. FUČÍK: Fixed Point Theorems Based on Leray-Schauder Degree.Comment. Math. Univ. Carolinae 8 (1967), 683-690. MR 0231249
Reference: [11] S. FUČÍK: Fixed Point Theorems for Sum of Nonlinear Mappings.Comment. Math. Univ. Carolinae 9 (1968), 133-143. MR 0233245
Reference: [12] A. GRANAS: Ob odnom klasse nelinejnych otobraženij v banachovych prostranatvach.Bull. Acad. Pol. Sci. V (1957), 867-872. MR 0091432
Reference: [13] R. I. KAČUROVSKIJ M. A. KRASNOSELSKIJ P. P. ZABREJKO: Ob odnom principe nepodvižnoj točki dlja operatorov v gilbertovom prostranstve.Funkcionalnyj analiz i evo priloženija 1 (1967), 93-94.
Reference: [14] J. KOLOMÝ: Some Existence Theorems for Nonlinear Problems.Comment. Math. Univ. Carolinae 7 (1966), 207-217. MR 0206763
Reference: [15] M. A. KRASNOSELSKIJ P. P. ZABREJKO: Ob odnom principe polučenija novych principov nepodvižnoj točki.Doklady Ak. Nauk SSSR 176 (1967), 1223-1225.
Reference: [16] M. Z. NASHED J. S. W. WONG: Some Variants of a Fixed Point Theorem of Krasnoselskii and Applications to Nonlinear Equations.Technical Summary Report, The University of Wisconsin, 1967.
Reference: [17] E. ROTHE: Zur Theorie der Topologischen Ordnung und der Vectorfelder in Banachschen Räumen.Compos. Math. 5 (1937), 177-197.
Reference: [18] M. SHINBROT: A Fixed Point Theorem and Some Applications.Arch. Rat. Mech. Anal. 17 (1965), 255-271. MR 0169068
Reference: [19] W. V. PETRYSHYN: Further Remarks on Nonlinear $P$ - Compact Operators in Banach Space.Jour. Math. Anal. Appl. 16 (1966), 243-253. Zbl 0149.10603, MR 0198299
.

Files

Files Size Format View
CommentatMathUnivCarol_010-1969-2_3.pdf 668.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo