Previous |  Up |  Next

Article

Title: A continuous geometry as a mathematical model for quantum mechanics (English)
Author: Duckenfield, Christopher J.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 10
Issue: 2
Year: 1969
Pages: 217-236
.
Category: math
.
MSC: 06-00
MSC: 81-06
MSC: 81Bxx
MSC: 81Q99
idZBL: Zbl 0208.27702
idMR: MR0250573
.
Date available: 2008-06-05T20:30:15Z
Last updated: 2012-04-27
Stable URL: http://hdl.handle.net/10338.dmlcz/105229
.
Reference: [1] G. MACKEY: Mathematical Foundations of Quantum Mechanics.Benjamin, 1961.
Reference: [2] I. KAPLANSKY: Any orthocomplemented complete modular lattice is a continuous geometry.Ann. Math., 1955, 61, 524-541. Zbl 0065.01801, MR 0088476
Reference: [3] C. DUCKENFIELD: Eigenvalues in continuous rings.submitted to Acta sci. math.
Reference: [4] J. von NEUMANN: Continuous geometry.Proc. Nat. Acad. Sci., U. S. A., 22 (1936), 92-100. Zbl 0014.22307
Reference: [5] J. von NEUMANN: Examples of continuous geometries.Proc. Nat. Acad. Sci., U. S. A., 22 (1936), 101-108. Zbl 0014.22308
Reference: [6] J. von NEUMANN: On regular rings.Proc. Nat. Acad. Sci., U. S. A., 22 (1936), 707-713. Zbl 0015.38802
Reference: [7] J. von NEUMANN: Algebraic theories of continuous geometries.Proc. Nat. Acad. Sci., U. S. A., 23 (1937), 16-22.
Reference: [8] J. von NEUMANN: Continuous rings and their arithmetics.Proc. Nat. Acad. Sci., U. S. A., 23 (1937), 341-349. Zbl 0017.14804
Reference: [9] J. von NEUMANN: Continuous Geometry.Princeton 1960. Zbl 0171.28003, MR 0120174
Reference: [10] L. SKORNYAKOV: Complemented Modular Lattices and Regular Rings.Oliver and Boyd, 1964. Zbl 0156.04101, MR 0169799
Reference: [11] P. HALMOS: Measure Theory.Van Nostrand, 1962. MR 0033869
Reference: [12] F. MAEDA: Kontinuierliche Geometrien.Sp. - Verlag, 1958. MR 0090579
.

Files

Files Size Format View
CommentatMathUnivCarol_010-1969-2_7.pdf 1.144Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo