Previous |  Up |  Next

Article

Title: Fredholm alternative for nonlinear operators in Banach spaces and its applications to the differential and integral equations (Preliminary communication) (English)
Author: Fučík, Svatopluk
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 11
Issue: 2
Year: 1970
Pages: 271-284
.
Category: math
.
MSC: 47-80
MSC: 47Hxx
idZBL: Zbl 0195.42801
idMR: MR0266000
.
Date available: 2008-06-05T20:32:22Z
Last updated: 2012-04-27
Stable URL: http://hdl.handle.net/10338.dmlcz/105278
.
Reference: [1] F. E. BROWDER D. G. de FIGUEIREDO: J-monotone nonlinear operators in Banach spaces.Konkl. Nederl. Acad. Wetensch. 69 (1966), 412-420. MR 0205122
Reference: [2] F. E. BROWDER W. V. PETRYSHYN: The topological degree and Galerkin approximations for noncompact operators in Banach spaces.Bull. Amer. Math. Soc. 74 (1968), 641-646. MR 0229100
Reference: [3] J. CRONIN: Fixed points and topological degree in nonlinear analysis.Amer. Math. Soc. 1964, Providence, R. I. Zbl 0117.34803, MR 0164101
Reference: [4] N. DUNFORD J. T. SCHWARTZ: Linear Operators I.(Russian), Moscow 1962. MR 0216303
Reference: [5] D. G. de FIGUEIREDO: Fixed point theorems for nonlinear operators and Galerkin approximations.Journ. Diff. Eq. 3 (1967), 271-281. Zbl 0149.10604, MR 0206761
Reference: [6] D. G. de FIGUEIREDO: Some remarks on fixed point theorems for nonlinear operators in Banach spaces.Lecture Series, Univ. of Maryland, 1967. Zbl 0176.45403
Reference: [7] D. G. de FIGUEIREDO: Topics in nonlinear analysis.Lecture Series, Univ. of Maryland, 1967.
Reference: [8] M. A. KRASNOSELSKIJ: Topological methods in the theory of nonlinear integral equations.(Russian), Moscow 1956.
Reference: [9] M. A. KRASNOSELSKIJ J. B. RUTICKIJ: Convex functions and Orlicz' spaces.(Russian), Moscow 1958.
Reference: [10] E. A. MICHAEL A. PELCZYNSKI: Separable Banach spaces which admit $l\sb{n}{}\sp{\infty }$ -approximations.Israel Math. J. (1966), 189-198. MR 0211247
Reference: [11] J. NEČAS: Sur l'alternative de Fredholm pour les opérateurs non-linéaires avec applications aux problèmes aux limites.Ann. Scuola Norm. Sup. Pisa XIII (1969), 331-345. Zbl 0187.08103, MR 0267430
Reference: [12] W. V. PETRYSHYN: On a fixed point theorem for nonlinear P-compact operators in Banach space.Bull. Amer. Math. Soc. 72 (1966), 329-334. Zbl 0142.11201, MR 0193548
Reference: [13] W. V. PETRYSHYN: Remarks on the approximation-solvability of nonlinear functional equations.Arch. Rat. Mech. Anal. 26 (1967), 43-49. Zbl 0166.12701, MR 0220120
Reference: [14] W. V. PETRYSHYN: On the approximation-solvability of nonlinear equations.Math. Ann. 177 (1968), 156-164. Zbl 0162.20301, MR 0226458
Reference: [15] S. I. POCHOŽAJEV: On the solvability of nonlinear equations with odd operators.(Russian), Funkcional. anal. i ego přilož. 1 (1967), 66-73. MR 0221344
Reference: [16] S. I. POCHOŽAJEV: O množestve kritičeskich značenij funkcionalov.Mat. sbornik 75 (1968), 106-111.
Reference: [17] S. SCHONEFELD: Schauder bases in spaces of differentiable functions.Bull. Amer. Math. Soc. 75 (1969), 586-590. Zbl 0201.16101, MR 0244753
Reference: [18] M. M. VAJNBERG: Variacionnyje metody issledovanija nelinejnych operatorov.Moskva 1956.
.

Files

Files Size Format View
CommentatMathUnivCarol_011-1970-2_6.pdf 900.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo