Previous |  Up |  Next

Article

Title: Computation of derivatives in the finite element method (English)
Author: Babuška, Ivo
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 11
Issue: 3
Year: 1970
Pages: 545-558
.
Category: math
.
MSC: 65-66
MSC: 65Jxx
MSC: 65N30
idZBL: Zbl 0219.65089
idMR: MR0275694
.
Date available: 2008-06-05T20:33:14Z
Last updated: 2012-04-27
Stable URL: http://hdl.handle.net/10338.dmlcz/105297
.
Reference: [1] M. ZLÁMAL: On the finite element method.Num. Math. 12 (1968), 394-409. MR 0243753
Reference: [2] J. P. AUBIN: Behavior of the error of the approximate solutions of boundary value problems for linear elliptic operators by Galerkin's and finite difference methods.Ann. Scuola Norm. Pisa XXI (1967), 559-637.
Reference: [3] P. G. CIARLET M. H. SCHULTZ R. S. VARGA: Numerical methods of high-order accuracy for nonlinear boundary value problems I. One dimens.Mum. Math. 9 (1967), 394-430. MR 0221761
Reference: [4] M. H. SCHULTZ: $L^2$ - multivariate approximation theory.SIAM J. Num. Anal. vol. 6, No. 2 (June 1969), 184-209. Zbl 0202.34901, MR 0251410
Reference: [5] M. H. SCHULTZ: $L^\infty$ -multivariate approximation theory.SIAM J. Num. Anal. vol. 6, no. 2 (June 1969), 161-183. Zbl 0202.34901, MR 0251409
Reference: [6] J. H. BRAMBLE M. ZLÁMAL: Triangular elements in the finite element method.To appear. Zbl 0276.65052, MR 0282540
Reference: [7] O. C. ZIENKIEWICZ: The finite element method in structural and continuum mechanics.London, McGraw Hill 1967. Zbl 0189.24902
Reference: [8] Y. R. RASHID: On computational methods in solid mechanics and stress analysis.Conf. on the Effective Use of Comp. in the nuclear industry April 21-23, 1969 Knowville.
Reference: [9] L. A. OGANESJAN L. A. RUCHOVEC: Variational difference schemes for second order linear elliptic equations in a two dimensional region with a piecewise smooth boundary.(Russ.) Ž. Vyčisl. Mat. i Mat. Fiz. 8 (1968), 97-114. MR 0233525
Reference: [10] L. A. OGANESJAN L. A. RUCHOVEC: A study of the rates of convergence of some variational-difference schemes for elliptic equations of second order in a two dimensional domain with smooth boundary.(Russian.) Ž. Vyčisl. Mat. i Mat. Fiz. 9 (1969), 1102-1119. MR 0295599
Reference: [11] J. NITSCHE: Lineare Spline Funktionen und die Methode von Ritz für elliptische Randwertprobleme.To appear. MR 0255043
Reference: [12] I. BABUŠKA: Error-Bounds for finite element method.Tech. Note BN-630, University of Maryland, Institute for Fluid Dynamics and Applied Mathematics, November 1969. MR 0288971
Reference: [13] I. BABUŠKA: Numerical solution of boundary value problems by the perturbed variational principle.Tech. Note BN-624, University of Maryland, Institute for Fluid Dynamics and Applied Mathematics, October 1969.
Reference: [14] I. BABUŠKA: The finite element method for elliptic equationa with discontinuous coefficients.Tech. Note BN-631, University of Maryland, Institute for Fluid. Dynamics and Applied Mathematics, Dec. 1969.
Reference: [15] I. BABUŠKA: Finite element method for domains with corners.Tech. Note BN-636, University of Maryland, Inst. for Fluid Dynamics and Applied Mathematics, January 1970.
Reference: [16] I. BABUŠKA: The rate of convergence for the finite element method.Technical Note BN-646, University of Maryland, Inst. for Fluid. Dynamics and Applied Mathematics, March 1970. MR 0287715
Reference: [17] I. BABUŠKA: Approximation by hill functions.Tech. Note BN-648, Univ. of Maryland, Inst. for Fluid Dynamics and Applied Mathematics, March 1970.
Reference: [18] K. YOSIDA: Functional analysis.New York, Academic Press 1965. Zbl 0126.11504, MR 0180824
Reference: [19] I. M. GELFAND G. M. SHILOV: Generalized functions.(translated from Russian), Vol. 1, Vol. 2. Academic Press, New York - London.
Reference: [20] J. SEGETHOVÁ: Numerical construction of the hill functions.Tech. Rep. 70-110-NGL-21-002-008, University of Maryland, Computer Science Center, April 1970.
Reference: [21] H. ARONSZAJN: Boundary value of functions with finite Dirichlet integral.Conf. on Part. Diff. Equa. No. 14, University of Kansas 1955.
Reference: [22] M. I. SLOBODECKIJ: Generalized Sobolev spaces and other application to boundary problems for partial differential equations.Leningrad. Gos. Univ. 97 (1958), 54-112. MR 0203222
Reference: [23] J. L. LIONS E. MAGENES: Problèmes aux limites non homogènes et applications.Vol. 1, Dunod 1968. MR 0247243
Reference: [24] E. STEIN: Lectures Notes.Orsay 66/67.
Reference: [25] Jaok PEETRE: Applications de la théorie des espaces d'interpolation dans l'analyse harmonique.Ricerche Mat. 15 (1966), 3-36. MR 0221214
.

Files

Files Size Format View
CommentatMathUnivCarol_011-1970-3_11.pdf 885.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo