Previous |  Up |  Next

Article

Title: The nonexistence of a weak solution of Dirichlet's problem for the functional of minimal surface on nonconvex domains (English)
Author: Souček, Vladimír
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 12
Issue: 4
Year: 1971
Pages: 723-736
.
Category: math
.
MSC: 35D05
MSC: 35J25
MSC: 35J60
MSC: 35J67
MSC: 49F10
MSC: 49Q05
MSC: 53A10
idZBL: Zbl 0256.35030
idMR: MR0296786
.
Date available: 2008-06-05T20:36:55Z
Last updated: 2012-04-27
Stable URL: http://hdl.handle.net/10338.dmlcz/105380
.
Reference: [1] R. FINN: Remark relevant to minimal surfaces and to surface of prescribed mean curvature.Journal d'Analyse Mathematique 14 (1965), 139-160. MR 0188909
Reference: [2] J. SOUČEK: The spaces of the functions on domain $\Omega $, whose k-th derivatives are measure, defined on $\overline \Omega $.- to appear in Czech. Math. Journ. MR 0313798
Reference: [3] J KAČÚR J. NEČAS J. SOUČEK: The ultraweak solutions of variational problems over spaces $W_1^(k) $ of the types of nonparametric minimal surface.- to appear.
Reference: [4] J. C. C. NITSCHE: On new results in the theory of minimal surfaces.Bull. Amer. math. Soc. 71 (1965), 195-270. Zbl 0135.21701, MR 0173993
Reference: [5] H. JENKINS J. SERRIN: Variational problems of minimal surface type II..Arch. Rat. Mech. Anal. 21 (1966), 321-342. MR 0190811
.

Files

Files Size Format View
CommentatMathUnivCarol_012-1971-4_7.pdf 1.173Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo