Previous |  Up |  Next

Article

Title: Remark on the Fredholm alternative for nonlinear operators with application to nonlinear integral equations of generalized Hammerstein type (English)
Author: Nečas, Jindřich
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 13
Issue: 1
Year: 1972
Pages: 109-120
.
Category: math
.
MSC: 35D05
MSC: 47B15
MSC: 47H15
MSC: 47H30
MSC: 47J05
MSC: 49G99
MSC: 58E05
idZBL: Zbl 0235.47039
idMR: MR0305171
.
Date available: 2008-06-05T20:37:44Z
Last updated: 2012-04-27
Stable URL: http://hdl.handle.net/10338.dmlcz/105399
.
Reference: [1] F. E. BROWDER: Existence and uniqueness theorems for solutions of non-linear boundary value problems.Proc. Symposia on Appl. Math. Amer. Math. Soc. 17 (1965), 24-49. MR 0197933
Reference: [2] F. E. BROWDER: Existence theorems for non-linear partial differential equations.Proc. Amer. Math. Soc. 1968. Summer Institute in Global Analysis (to appear).
Reference: [3] F. E. BROWDER: Non-linear operators and non-linear equations of evolution in Banach spaces.Proceedings of the Symposium on Non-linear Functional Analysis, Amer. Math. Soc. April, 1968 in Chicago. To appear.
Reference: [4] D. G. de FIGUEIREDO, Ch. P. GUPTA: Borsuk type theorems for non-linear non-compact mappings in Banach Space.to appear.
Reference: [5] S. FUČÍK: Note on the Fredholm alternative for nonlinear operators.Comment. Math. Univ. Carolinae 12 (1971), 213-226. MR 0288641
Reference: [6] M. A. KRASNOSELSKIJ: Topological methods in the theory of non-linear integral equations.Pergamon Press, N. T. 1964.
Reference: [7] M. KUČERA: Fredholm alternative for non-linear operators.thesis 1969, Charles University, Prague.
Reference: [8] M. KUČERA: Fredholm alternative for nonlinear operators.Comment. Math. Univ. Carolinae 11 (1970), 337-363. MR 0267429
Reference: [9] J. NEČAS: Sur l'alternative de Fredholm pour les opérateurs non linéaires avec applications aux problèmes aux limites.Annali Scuola Norm. Sup. Pisa, XXIII (1969), 331-345. Zbl 0187.08103, MR 0267430
Reference: [10] S. I. POCHOŽAJEV: On the solvability of non-linear equations involving odd operators.Functional Analysis and Appl. (Russian), 1 (1967), 66-73.
Reference: [11] M. M. VAJNBERG: Variational methods for the study of non-linear operators.Holden-Day, 1964.
.

Files

Files Size Format View
CommentatMathUnivCarol_013-1972-1_9.pdf 824.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo