Title:
|
Hyper-extensions of $\sigma$-algebras (English) |
Author:
|
Frolík, Zdeněk |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
14 |
Issue:
|
2 |
Year:
|
1973 |
Pages:
|
361-375 |
. |
Category:
|
math |
. |
MSC:
|
26A21 |
MSC:
|
28A05 |
MSC:
|
54C50 |
idZBL:
|
Zbl 0276.28004 |
idMR:
|
MR0346115 |
. |
Date available:
|
2008-06-05T20:42:09Z |
Last updated:
|
2012-04-27 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/105496 |
. |
Reference:
|
[1] Z. FROLÍK: A measurable map with analytic domain and metrizable range is quotient.Bull. Amer. Math. Soc. 76 (1970), 1112-1117. MR 0265539 |
Reference:
|
[2] Z. FROLÍK: Real-compactness is a Baire measurable property.Bull. Acad. Polon. XIX (1971), 617-621. MR 0301154 |
Reference:
|
[3] Z. FROLÍK: Topological methods in measure theory and the theory of measurable spaces.Proc. Third Prague Topological Symposium 1971, Academia, Prague, 1972, 127-139. MR 0372141 |
Reference:
|
[4] Z. FROLÍK: Prime filters with CIP.Comment. Math. Univ. Carolinae 13 (1972), 553-575. MR 0315648 |
Reference:
|
[5] Z. FROLÍK: Baire sets and uniformities on complete metric spaces.Comment. Math. Univ. Carolinae 13 (1972), 137-147. MR 0325903 |
Reference:
|
[6] Z. FROLÍK: Complete measurable spaces.To appear. |
Reference:
|
[7] A. HAGER G. REYNOLDS M. RICE: Borel-complete topological spaces.Fund. Math. 75 (1972), 135-143. MR 0309071 |
Reference:
|
[8] R. HANSELL: .PhD dissertation, Rochester 1970. |
Reference:
|
[9] R. HANSELL: On the non-separable theory of Borel and Souslin sets.Bull. Amer. Math. Soc. 78 (1972), 236-241. MR 0294138 |
Reference:
|
[10] A. HAYES: Alexander's theorem for realcompactness.Proc. Cambridge Philos. Soc. 64 (1968), 41-43. MR 0221472 |
Reference:
|
[11] E. HEWITT: Linear functionals on spaces of continuous functions.Fund. Math. 37 (1950), 161-18. Zbl 0040.06401, MR 0042684 |
Reference:
|
[12] W. MORAN: Measures and mappings on topological spaces.Proc. London Math. Soc. (3) 19 (1969), 493-508 Zbl 0186.37201 |
. |