Previous |  Up |  Next

Article

Title: Note on nonlinear spectral theory: Application to boundary value problems for ordinary integrodifferential equations (English)
Author: Fučík, Svatopluk
Author: Tran, Dien Hien
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 14
Issue: 4
Year: 1973
Pages: 583-608
.
Category: math
.
MSC: 47H10
MSC: 47H15
MSC: 47J05
idZBL: Zbl 0266.47058
idMR: MR0333631
.
Date available: 2008-06-05T20:42:50Z
Last updated: 2012-04-27
Stable URL: http://hdl.handle.net/10338.dmlcz/105512
.
Reference: [1] A. ALEXIEWICZ W. ORLICZ: Analytic operations in real Banach spaces.Studia Math. XIV (1954), 47-78. MR 0062947
Reference: [2] S. FUČÍK: Note on the Fredholm alternative for nonlinear operators.Comment. Math. Univ. Carolinae 12 (1971), 213-226. MR 0288641
Reference: [3] S. FUČÍK O. JOHN J. NEČAS: Schauder bases in Sobolev spaces.Comment. Math. Univ. Carolinae 13 (1972), 163-175. MR 0306890
Reference: [4] S. FUČÍK J. NEČAS: Ljusternik-Schnirelman theorem and nonlinear eigenvalue problems.Math. Nachr. 53 (1972), 277-289. MR 0333863
Reference: [5] S. FUČÍK J. NEČAS J. SOUČEK V. SOUČEK: Upper bound for the number of critical levels for nonlinear operators in Banach spaces of the type of second order nonlinear partial differential operators.Journ. Funct. Anal. 11 (1972), 314-333. MR 0341224
Reference: [6] S. FUČÍK J. NEČAS J. SOUČEK V. SOUČEK: Note to nonlinear spectral theory: Application to the nonlinear integral equations of the Lichtenstein type.(to appear).
Reference: [7] S. FUČÍK J. NEČAS J. SOUČEK V. SOUČEK: Spectral analysis of nonlinear operators.Lecture notes in mathematics No 346, Springer 1973. MR 0467421
Reference: [8] E. HILLE R. PHILLIPS: Functional analysis and semigroups.Providence 1957.
Reference: [9] J. NEČAS: Fredholm theory of boundary value problems for nonlinear ordinary differential operators.Theory of Nonlinear Operators, Proceedings of a Summer School held in September 1971 at Babylon-Czechoslovakia, pp. 85-120, Academia, Prague 1973. MR 0402562
Reference: [10] M. M. VAJNBERG: Variational methods for the study of nonlinear operators.Holden-Day, 1964. Zbl 0122.35501
.

Files

Files Size Format View
CommentatMathUnivCarol_014-1973-4_2.pdf 1.170Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo