Title:
|
Note on nonlinear spectral theory: Application to boundary value problems for ordinary integrodifferential equations (English) |
Author:
|
Fučík, Svatopluk |
Author:
|
Tran, Dien Hien |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
14 |
Issue:
|
4 |
Year:
|
1973 |
Pages:
|
583-608 |
. |
Category:
|
math |
. |
MSC:
|
47H10 |
MSC:
|
47H15 |
MSC:
|
47J05 |
idZBL:
|
Zbl 0266.47058 |
idMR:
|
MR0333631 |
. |
Date available:
|
2008-06-05T20:42:50Z |
Last updated:
|
2012-04-27 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/105512 |
. |
Reference:
|
[1] A. ALEXIEWICZ W. ORLICZ: Analytic operations in real Banach spaces.Studia Math. XIV (1954), 47-78. MR 0062947 |
Reference:
|
[2] S. FUČÍK: Note on the Fredholm alternative for nonlinear operators.Comment. Math. Univ. Carolinae 12 (1971), 213-226. MR 0288641 |
Reference:
|
[3] S. FUČÍK O. JOHN J. NEČAS: Schauder bases in Sobolev spaces.Comment. Math. Univ. Carolinae 13 (1972), 163-175. MR 0306890 |
Reference:
|
[4] S. FUČÍK J. NEČAS: Ljusternik-Schnirelman theorem and nonlinear eigenvalue problems.Math. Nachr. 53 (1972), 277-289. MR 0333863 |
Reference:
|
[5] S. FUČÍK J. NEČAS J. SOUČEK V. SOUČEK: Upper bound for the number of critical levels for nonlinear operators in Banach spaces of the type of second order nonlinear partial differential operators.Journ. Funct. Anal. 11 (1972), 314-333. MR 0341224 |
Reference:
|
[6] S. FUČÍK J. NEČAS J. SOUČEK V. SOUČEK: Note to nonlinear spectral theory: Application to the nonlinear integral equations of the Lichtenstein type.(to appear). |
Reference:
|
[7] S. FUČÍK J. NEČAS J. SOUČEK V. SOUČEK: Spectral analysis of nonlinear operators.Lecture notes in mathematics No 346, Springer 1973. MR 0467421 |
Reference:
|
[8] E. HILLE R. PHILLIPS: Functional analysis and semigroups.Providence 1957. |
Reference:
|
[9] J. NEČAS: Fredholm theory of boundary value problems for nonlinear ordinary differential operators.Theory of Nonlinear Operators, Proceedings of a Summer School held in September 1971 at Babylon-Czechoslovakia, pp. 85-120, Academia, Prague 1973. MR 0402562 |
Reference:
|
[10] M. M. VAJNBERG: Variational methods for the study of nonlinear operators.Holden-Day, 1964. Zbl 0122.35501 |
. |