Previous |  Up |  Next

Article

Title: Applications of the induced morphism theorem in regular categories (English)
Author: Fay, Temple H.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 16
Issue: 2
Year: 1975
Pages: 359-375
.
Category: math
.
MSC: 18A20
MSC: 18A30
MSC: 18A35
MSC: 18D05
MSC: 18E10
idZBL: Zbl 0305.18002
idMR: MR0424893
.
Date available: 2008-06-05T20:48:10Z
Last updated: 2012-04-27
Stable URL: http://hdl.handle.net/10338.dmlcz/105630
.
Reference: [1] J. ACZEL: A remark on functional dependence.J. Math. Psych. 2 (1965), 125-127. Zbl 0142.11203, MR 0204902
Reference: [2] M. BARR: Exact categories.Springer - Verlag Lecture Notes in Mathematics, 236 (1971), 1-120. Zbl 0223.18010
Reference: [3] A. R. BEDNAREK A. D. WALLACE: A relation-theoretic result with applications in topological algebra.Math. Systems Theory 1 (1963), 217-224. MR 0221463
Reference: [4] N. BOURBAKI: Théorie des ensembles.Livre 1 (Hermann, Paris I960). Zbl 1100.03002
Reference: [5] W. D. BURGESS X. CAICEDO: Relations and congruences in regular categories.Preprint. MR 0674933
Reference: [6] A. H. CLIFFORD G. B. PRESTON: The algebraic theory of semigroups.Vol. 1, Amer. Math. Soc. Surveys 7 (1961). MR 0132791
Reference: [7] J. M. DAY: Semigroup Acts.Algebraic and Topological, Second Florida Symposium on automata and semigroups, Univ. of Fla. (1971).
Reference: [8] T. H. FAY: A natural transformation approach to additivity.Preprint.
Reference: [9] T. H. FAY: A note on when a regular category is exact.Preprint.
Reference: [10] P. A. GRILLET: Regular categories.Springer - Verlag Lecture Notes in Mathematics 236 (1971), 121-222. Zbl 0251.18001, MR 0289599
Reference: [11] H. HERRLICH: Algebraic categories. An axiomatic approach.Preprint.
Reference: [12] H. HERRLICH G. E. STRECKER: Category Theory.(Allyn and Bacon, Boston 1973). MR 0349791
Reference: [13] A. KLEIN: Relations in categories.Illinois J. Math. 14 (1970), 536-550. Zbl 0217.07001, MR 0268247
Reference: [14] J. LAMBEK: Goursat's Theorem and the Zassenhaus Lemma.Can. J. Math. 10 (1957), 45-56. MR 0098138
Reference: [15] J. LAMBEK: Goursat's Theorem and homological algebra.Can. Math. Bull. 7 (19S4), 597-607. MR 0174612
Reference: [16] S. MacLANE: An algebra of additive relations.Proc. Mat. Acad. Sci. 47 (1961), 1043-1051. Zbl 0123.01102, MR 0126477
Reference: [17] M. MARTIN: On the Induced Function Theorem.J. Undergrad. Math. 5 (1973), 5-8.
Reference: [18] M. MARTIN: The Induced Function Theorem and some equivalent theorems.To appear J. Undergrad. Math. MR 0492418
Reference: [19] J. MEISEN: Relations in Categories.Ph. D. Thesis, McGill Univ. (1972). MR 2622453
Reference: [20] E. M. NORRIS: Some Structure Theorems for Topological Machines.Ph. D. Thesis, Univ. of Fla. (1969).
Reference: [21] E. M. NORRIS: Relationally induced semigroups.To appear Pacific J. Math. Zbl 0295.22004, MR 0327971
Reference: [22] E. M. NORRIS A. R. BEDHAREK: Inducing functions difunctionally.Preprint.
Reference: [23] J. RIGUET: Relations binaires, fermetures, correspondances de Galois.Bull. Soc. Math. France 76 (1948), 114-155. Zbl 0131.01202, MR 0028814
Reference: [24] J. RIGUET: Quelques propriétées des relations difonctionnelles.C. R. Acad. Sci. Paris 230 (1950), 1999-2000. MR 0035743
.

Files

Files Size Format View
CommentatMathUnivCarol_016-1975-2_12.pdf 1.190Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo