Previous |  Up |  Next

Article

Title: Real-valued functions on Alexandroff (zero-set) spaces (English)
Author: Hager, Anthony W.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 16
Issue: 4
Year: 1975
Pages: 755-769
.
Category: math
.
MSC: 54C30
MSC: 54C35
MSC: 54C45
MSC: 54C50
MSC: 54E15
MSC: 54G05
MSC: 54G10
MSC: 54H05
idZBL: Zbl 0312.54022
idMR: MR0394547
.
Date available: 2008-06-05T20:49:45Z
Last updated: 2012-04-27
Stable URL: http://hdl.handle.net/10338.dmlcz/105664
.
Reference: [1] A. D. ALEXANDROFF: Additive set functions in abstract spaces.Mat. Sbornik 50 (1940), 30-348; 51 (1941), 563-628; 55 (1943), 169-238. Zbl 0023.39701, MR 0012207
Reference: [2] R. L. BLAIR A. W. HAGER: Extensions of zero-sets and of real-valued functions.Math. Zeit. 136 (1974), 41-52. MR 0385793
Reference: [3] R. ENGELKING: Outline of General Topology.Amsterdam, 1968. Zbl 0157.53001, MR 0230273
Reference: [4] Z. FROLÍK: Three uniform spaces associated with realvalued functions.Proc. Rome conference on rings of continuous functions 1973, to appear. MR 0375243
Reference: [5] Z. FROLÍK: On uniform spaces.Comment. Math. Univ. Carolinae 16 (1975), 189-199. MR 0370516
Reference: [6] L. GILLMAN M. JERISON: Rings of Continuous Functions.D. van Nostrand Co., 1960. MR 0116199
Reference: [7] H. GORDON: Rings of functions determined by zero-sets.Pac. J. Math. 36 (1971), 1331-157. Zbl 0185.38803, MR 0320996
Reference: [8] A. W. HAGER: On inverse-closed subalgebras of $C(X)$.Proc. London Math. Soc. (3) 19 (1969), 233-257. Zbl 0169.54005, MR 0244948
Reference: [9] A. W. HAGER: An approximation technique for real-valued functions.Gen. Top. and Appl. 1 (1971), 415-418. Zbl 0219.54010, MR 0291704
Reference: [10] A. W. HAGER: An approximation technique for real-valued functions, 2.preprint 1972. MR 0291704
Reference: [11] A. W. HAGER: Some nearly fine uniform spaces.Proc. London Math. Soc. (3) 28 (1974), 517-546. Zbl 0284.54017, MR 0397670
Reference: [12] A. W. HAGER: Uniformities induced by proximity, cozero- and Baire sets.to appear.
Reference: [13] P. HAUSDORFF: Set Theory.(Chelsea Reprint) New York, 1957. Zbl 0081.04601
Reference: [14] R. D. MAULDIN: On the Baire system generated by a linear lattice of functions.Fund. Math. 68 (1970), 51-59. Zbl 0197.38104, MR 0273363
Reference: [15] S. G. MRÓWKA: Characterization of classes of functions by Lebesque sets.Czech. Math. J. 19 (1969), 738-744. MR 0248291
.

Files

Files Size Format View
CommentatMathUnivCarol_016-1975-4_14.pdf 951.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo