Previous |  Up |  Next

Article

Title: A note on strong differentiability spaces (English)
Author: John, Kamil
Author: Zizler, Václav E.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 17
Issue: 1
Year: 1976
Pages: 127-134
.
Category: math
.
MSC: 46B03
MSC: 46B05
MSC: 46B10
MSC: 46B99
MSC: 58C20
idZBL: Zbl 0346.46008
idMR: MR0402469
.
Date available: 2008-06-05T20:50:27Z
Last updated: 2012-04-27
Stable URL: http://hdl.handle.net/10338.dmlcz/105680
.
Reference: [1] E. ASPLUND: Fréchet differentiability of convex functions.Acta Math. 121 (1968), 3-47. Zbl 0162.17501, MR 0231199
Reference: [2] E. ASPLUND: Boundedly Krejn-compact Banach spaces.Proc. of Functional Analysis week, Aarhus (1969). MR 0254569
Reference: [3] E. ASPLUND R. T. ROCKAFELLAR: Gradients of convex functions.Trans. Amer. Math. Soc. 139 (1969), 443-467. MR 0240621
Reference: [4] J. DIESTEL J. J. UHL: The Radon-Nikodym property for Banach spaces - valued measures.to appear.
Reference: [5] R. C. JAMES: A separable somewhat reflexive Banach space with nonseparable dual.Bull. Amer. Math. Soc. 80 (1974), 738-743. Zbl 0286.46018, MR 0417763
Reference: [6] W. B. JOHNSON, J. LINDEBSTRAUSS: Some remarks on weakly compactly generated Banach spaces.Israel J. Math. 17 (1974), 219-230. MR 0417760
Reference: [7] K. JOHN V. ZIZLER: A note on renorming of dual space.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 21 (1973), 47-50. MR 0320711
Reference: [8] K. JOHN V. ZIZLER: On the heredity of weak compact generating.Israel J. Math. 20 (1975), 228-236. MR 0380369
Reference: [9] V. I. KADEC: Some conditions of the differentiability of the norm of Banach spaces.Uspechi Mat. Nauk SSSR 20 (1965), 183-187 (Russian). MR 0185416
Reference: [10] V. KLAS: Extremal structure of convex sets II.Math. Zeitschr. 69 (1958), 90-104. MR 0092113
Reference: [11] J. LINDENSTRAUSS: Weakly compact sets, their topological properties and the Banach spaces they generate.Symp. on Infinite Dimensional Topology, Annals of Math. Studies 69, Princeton Univ. Press, (1972), 235-273. Zbl 0232.46019, MR 0417761
Reference: [12] H. MAYNARD: A geometrical characterization of Banach spaces with the Radon-Nikodym property.Trans. Amer. Math. Soc. 185 (1973), 493-500. MR 0385521
Reference: [13] I. NAMIOKA: Separate continuity and joint continuity.Pac. J. Math. 51 (1974), 515-531. Zbl 0294.54010, MR 0370466
Reference: [14] R. R. PHELPS: Dentability and extreme points in Banach spaces.J. Functional Analysis, 17 (1974), 78-90. Zbl 0287.46026, MR 0352941
Reference: [15] M. A. RIEFFEL: Dentable subsets of Banach spaces with applications to a Radon-Nikodym theorem.in Functional Analysis (B. R. Gelbaum, editor). Washington: Thompson Book Co., 1967. MR 0222618
Reference: [16] C. STEGALL: fhe Radon-Nikodym property in conjugate Banach spaces.to appear. MR 0374381
Reference: [17] S. TROJANSKI: On equivalent norms and minimal systems in nonseparable Banach spaces.Studia Math. 43 (1972), 125-138. MR 0324382
Reference: [18] V. ZIZLER: On extremal structure of weakly locally compact convex sets in Banach spaces.Comment . Math. Univ. Carolinae 13 (1972), 53-61. Zbl 0231.46037, MR 0305043
Reference: [19] V. ZIZLER: Remark on extremal structure of convex sets in Banach spaces.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 6 (1971), 451-455. Zbl 0217.44202, MR 0305042
.

Files

Files Size Format View
CommentatMathUnivCarol_017-1976-1_11.pdf 614.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo