Title:
|
A note on strong differentiability spaces (English) |
Author:
|
John, Kamil |
Author:
|
Zizler, Václav E. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
17 |
Issue:
|
1 |
Year:
|
1976 |
Pages:
|
127-134 |
. |
Category:
|
math |
. |
MSC:
|
46B03 |
MSC:
|
46B05 |
MSC:
|
46B10 |
MSC:
|
46B99 |
MSC:
|
58C20 |
idZBL:
|
Zbl 0346.46008 |
idMR:
|
MR0402469 |
. |
Date available:
|
2008-06-05T20:50:27Z |
Last updated:
|
2012-04-27 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/105680 |
. |
Reference:
|
[1] E. ASPLUND: Fréchet differentiability of convex functions.Acta Math. 121 (1968), 3-47. Zbl 0162.17501, MR 0231199 |
Reference:
|
[2] E. ASPLUND: Boundedly Krejn-compact Banach spaces.Proc. of Functional Analysis week, Aarhus (1969). MR 0254569 |
Reference:
|
[3] E. ASPLUND R. T. ROCKAFELLAR: Gradients of convex functions.Trans. Amer. Math. Soc. 139 (1969), 443-467. MR 0240621 |
Reference:
|
[4] J. DIESTEL J. J. UHL: The Radon-Nikodym property for Banach spaces - valued measures.to appear. |
Reference:
|
[5] R. C. JAMES: A separable somewhat reflexive Banach space with nonseparable dual.Bull. Amer. Math. Soc. 80 (1974), 738-743. Zbl 0286.46018, MR 0417763 |
Reference:
|
[6] W. B. JOHNSON, J. LINDEBSTRAUSS: Some remarks on weakly compactly generated Banach spaces.Israel J. Math. 17 (1974), 219-230. MR 0417760 |
Reference:
|
[7] K. JOHN V. ZIZLER: A note on renorming of dual space.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 21 (1973), 47-50. MR 0320711 |
Reference:
|
[8] K. JOHN V. ZIZLER: On the heredity of weak compact generating.Israel J. Math. 20 (1975), 228-236. MR 0380369 |
Reference:
|
[9] V. I. KADEC: Some conditions of the differentiability of the norm of Banach spaces.Uspechi Mat. Nauk SSSR 20 (1965), 183-187 (Russian). MR 0185416 |
Reference:
|
[10] V. KLAS: Extremal structure of convex sets II.Math. Zeitschr. 69 (1958), 90-104. MR 0092113 |
Reference:
|
[11] J. LINDENSTRAUSS: Weakly compact sets, their topological properties and the Banach spaces they generate.Symp. on Infinite Dimensional Topology, Annals of Math. Studies 69, Princeton Univ. Press, (1972), 235-273. Zbl 0232.46019, MR 0417761 |
Reference:
|
[12] H. MAYNARD: A geometrical characterization of Banach spaces with the Radon-Nikodym property.Trans. Amer. Math. Soc. 185 (1973), 493-500. MR 0385521 |
Reference:
|
[13] I. NAMIOKA: Separate continuity and joint continuity.Pac. J. Math. 51 (1974), 515-531. Zbl 0294.54010, MR 0370466 |
Reference:
|
[14] R. R. PHELPS: Dentability and extreme points in Banach spaces.J. Functional Analysis, 17 (1974), 78-90. Zbl 0287.46026, MR 0352941 |
Reference:
|
[15] M. A. RIEFFEL: Dentable subsets of Banach spaces with applications to a Radon-Nikodym theorem.in Functional Analysis (B. R. Gelbaum, editor). Washington: Thompson Book Co., 1967. MR 0222618 |
Reference:
|
[16] C. STEGALL: fhe Radon-Nikodym property in conjugate Banach spaces.to appear. MR 0374381 |
Reference:
|
[17] S. TROJANSKI: On equivalent norms and minimal systems in nonseparable Banach spaces.Studia Math. 43 (1972), 125-138. MR 0324382 |
Reference:
|
[18] V. ZIZLER: On extremal structure of weakly locally compact convex sets in Banach spaces.Comment . Math. Univ. Carolinae 13 (1972), 53-61. Zbl 0231.46037, MR 0305043 |
Reference:
|
[19] V. ZIZLER: Remark on extremal structure of convex sets in Banach spaces.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 6 (1971), 451-455. Zbl 0217.44202, MR 0305042 |
. |