Previous |  Up |  Next

Article

Title: Continuite lipschitzienne du spectre comme fonction d'un opérateur normal (French)
Title: Lipschitz continuity of spectrum as function of a normal operator (English)
Author: Pták, Vlastimil
Author: Zemánek, Jaroslav
Language: French
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 17
Issue: 3
Year: 1976
Pages: 507-512
.
Category: math
.
MSC: 15A60
MSC: 47A10
MSC: 47B15
idZBL: Zbl 0341.47019
idMR: MR0493433
.
Date available: 2008-06-05T20:51:56Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/105713
.
Reference: [1] B. AUPETIT: Continuité et uniforme continuité du spectre dans les algèbres de Banach.à paraitre. Zbl 0372.46044
Reference: [2] F. L. BAUER C. T. FIKE: Norms and exclusion theorems.Numer. Math. 2 (1960), 137-141. MR 0118729
Reference: [3] N. BOURBAKI: Théories spectrales.Paris 1967. Zbl 0152.32603
Reference: [4] J. B. CONWAY: On the Calkin algebra and the covering homotopy property.Trans. Amer. Math. Soc. 211 (1975), 135-142. Zbl 0281.46055, MR 0399875
Reference: [5] M. FIEDLER: Additive compound matrices and an inequality for eigenvalues of symmetric stochastic matrices.Czech. Math. J. 24 (1974), 392-402. Zbl 0345.15013, MR 0347858
Reference: [6] A. J. HOFFMAN H. W. WIELANDT: The variation of the spectrum of a normal matrix.Duke Math. J. 20 (1953), 37-39. MR 0052379
Reference: [7] V. I. ISTRĂTESCU: Introducere în teoria operatorilor liniari.Bucureşti 1975.
Reference: [8] J. JANAS: Note on the spectrum and joint spectrum of hyponormal and Toeplitz operators.Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 23 (1975), 957-961. Zbl 0317.47015, MR 0440401
Reference: [9] T. KATO: Perturbation theory for linear operators.New York 1S66. Zbl 0836.47009, MR 0203473
Reference: [10] J. D. NEWBURGH: The variation of spectra.Duke Math. J. 19 (1951), 165-176. Zbl 0042.12302, MR 0051441
Reference: [11] V. PTÁK: An inclusion theorem for normal operators.Acta Sci. Math. Szeged, sous presse. MR 0410447
Reference: [12] J. STOER R. BULIRSCH: Einführung in die Numerische Mathematik II.Berlin 1911.
Reference: [13] J. ZEMÁNEK: Spectral radius characterizations of commutativity in Banach algebras.Studia Math., sous presse. MR 0461139
.

Files

Files Size Format View
CommentatMathUnivCarol_017-1976-3_8.pdf 510.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo