Title:
|
Continuite lipschitzienne du spectre comme fonction d'un opérateur normal (French) |
Title:
|
Lipschitz continuity of spectrum as function of a normal operator (English) |
Author:
|
Pták, Vlastimil |
Author:
|
Zemánek, Jaroslav |
Language:
|
French |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
17 |
Issue:
|
3 |
Year:
|
1976 |
Pages:
|
507-512 |
. |
Category:
|
math |
. |
MSC:
|
15A60 |
MSC:
|
47A10 |
MSC:
|
47B15 |
idZBL:
|
Zbl 0341.47019 |
idMR:
|
MR0493433 |
. |
Date available:
|
2008-06-05T20:51:56Z |
Last updated:
|
2012-04-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/105713 |
. |
Reference:
|
[1] B. AUPETIT: Continuité et uniforme continuité du spectre dans les algèbres de Banach.à paraitre. Zbl 0372.46044 |
Reference:
|
[2] F. L. BAUER C. T. FIKE: Norms and exclusion theorems.Numer. Math. 2 (1960), 137-141. MR 0118729 |
Reference:
|
[3] N. BOURBAKI: Théories spectrales.Paris 1967. Zbl 0152.32603 |
Reference:
|
[4] J. B. CONWAY: On the Calkin algebra and the covering homotopy property.Trans. Amer. Math. Soc. 211 (1975), 135-142. Zbl 0281.46055, MR 0399875 |
Reference:
|
[5] M. FIEDLER: Additive compound matrices and an inequality for eigenvalues of symmetric stochastic matrices.Czech. Math. J. 24 (1974), 392-402. Zbl 0345.15013, MR 0347858 |
Reference:
|
[6] A. J. HOFFMAN H. W. WIELANDT: The variation of the spectrum of a normal matrix.Duke Math. J. 20 (1953), 37-39. MR 0052379 |
Reference:
|
[7] V. I. ISTRĂTESCU: Introducere în teoria operatorilor liniari.Bucureşti 1975. |
Reference:
|
[8] J. JANAS: Note on the spectrum and joint spectrum of hyponormal and Toeplitz operators.Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 23 (1975), 957-961. Zbl 0317.47015, MR 0440401 |
Reference:
|
[9] T. KATO: Perturbation theory for linear operators.New York 1S66. Zbl 0836.47009, MR 0203473 |
Reference:
|
[10] J. D. NEWBURGH: The variation of spectra.Duke Math. J. 19 (1951), 165-176. Zbl 0042.12302, MR 0051441 |
Reference:
|
[11] V. PTÁK: An inclusion theorem for normal operators.Acta Sci. Math. Szeged, sous presse. MR 0410447 |
Reference:
|
[12] J. STOER R. BULIRSCH: Einführung in die Numerische Mathematik II.Berlin 1911. |
Reference:
|
[13] J. ZEMÁNEK: Spectral radius characterizations of commutativity in Banach algebras.Studia Math., sous presse. MR 0461139 |
. |