Previous |  Up |  Next

Article

Title: A note on a dual finite element method (English)
Author: Haslinger, Jaroslav
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 17
Issue: 4
Year: 1976
Pages: 665-673
.
Category: math
.
MSC: 65N30
idZBL: Zbl 0361.65095
idMR: MR0431750
.
Date available: 2008-06-05T20:52:31Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/105726
.
Reference: [1] B. Fraeijs de VEUBEKE: Displacement and equilibrium models in the finite element method.Stress Analysis, ed. by O. C. Zienkiewicz and G. Holister, J. Wiley, 1965, 145-197.
Reference: [2] B. Fraeijs de VEUBEKE O. C. ZIENKIEWICZ: Strain energy bounds in finite-element analysis by slab analogies.J. Strain Analysis 2 (1967), 265-271.
Reference: [3] V. B., Jr. WATWOOD B. J. HARTZ: An equilibrium stress field model for finite element solution of twodimensional elastostatic problems.Int. J. Solids Structures 4 (1968), 857-873.
Reference: [4] B. Fraeijs de VEUBEKE M. HOGGE: Dual analysis for heat conduction problems by finite elements.Int. J. Numer. Meth. Eng. (1972), 65-82.
Reference: [5] J. P. AUBIN H. G. BURCHARD: Some aspects of the method of the hypercicle applied to elliptic variational problems.Numer. Sol. Part. Dif. Eqs. II, Synspade (1970), 1- 67. MR 0285136
Reference: [6] J. VACEK: Dual variational principles for an elliptic partial differential equation.Apl. mat. 18 (1976), 5-27. Zbl 0345.35035, MR 0412594
Reference: [7] G. GRENACHER: A posteriori error estimates for elliptic partial differential equations.Inst. Fluid Dynamics and Appl. Math., Univ. Maryland, TN-BN-T 43, July 1972.
Reference: [8] J. M. THOMAS: Méthods des éléments finis équilibre pour les problèmes elliptiques du $2$-ème ordre.To appear.
Reference: [9] J. HASLINGER I. HLAVÁČEK: Convergence of a finite element method based on the dual variational formulation.Apl. mat. 21 (1976), 43-65. MR 0398126
Reference: [10] J. HASLINGER I. HLAVÁČEK: Convergence of a dual finite element method in $R_n$.Comment. Math. Univ. Carolinae 16 (1975), 369-486. MR 0386303
Reference: [11] P. G. CIARLET P. A. RAVIART: General Lagrange and Hermite interpolation in $R^n$ with applications to finite element method.Arch. Rat. Mech. Anal. 46 (1972), 177-199. MR 0336957
Reference: [12] J. H. BRAMBLE M. ZLÁMAL: Triangular elements in the finite element method.Math. Comp. 24 (1970), 809-820. MR 0282540
.

Files

Files Size Format View
CommentatMathUnivCarol_017-1976-4_4.pdf 743.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo