Title:
|
A note on a dual finite element method (English) |
Author:
|
Haslinger, Jaroslav |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
17 |
Issue:
|
4 |
Year:
|
1976 |
Pages:
|
665-673 |
. |
Category:
|
math |
. |
MSC:
|
65N30 |
idZBL:
|
Zbl 0361.65095 |
idMR:
|
MR0431750 |
. |
Date available:
|
2008-06-05T20:52:31Z |
Last updated:
|
2012-04-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/105726 |
. |
Reference:
|
[1] B. Fraeijs de VEUBEKE: Displacement and equilibrium models in the finite element method.Stress Analysis, ed. by O. C. Zienkiewicz and G. Holister, J. Wiley, 1965, 145-197. |
Reference:
|
[2] B. Fraeijs de VEUBEKE O. C. ZIENKIEWICZ: Strain energy bounds in finite-element analysis by slab analogies.J. Strain Analysis 2 (1967), 265-271. |
Reference:
|
[3] V. B., Jr. WATWOOD B. J. HARTZ: An equilibrium stress field model for finite element solution of twodimensional elastostatic problems.Int. J. Solids Structures 4 (1968), 857-873. |
Reference:
|
[4] B. Fraeijs de VEUBEKE M. HOGGE: Dual analysis for heat conduction problems by finite elements.Int. J. Numer. Meth. Eng. (1972), 65-82. |
Reference:
|
[5] J. P. AUBIN H. G. BURCHARD: Some aspects of the method of the hypercicle applied to elliptic variational problems.Numer. Sol. Part. Dif. Eqs. II, Synspade (1970), 1- 67. MR 0285136 |
Reference:
|
[6] J. VACEK: Dual variational principles for an elliptic partial differential equation.Apl. mat. 18 (1976), 5-27. Zbl 0345.35035, MR 0412594 |
Reference:
|
[7] G. GRENACHER: A posteriori error estimates for elliptic partial differential equations.Inst. Fluid Dynamics and Appl. Math., Univ. Maryland, TN-BN-T 43, July 1972. |
Reference:
|
[8] J. M. THOMAS: Méthods des éléments finis équilibre pour les problèmes elliptiques du $2$-ème ordre.To appear. |
Reference:
|
[9] J. HASLINGER I. HLAVÁČEK: Convergence of a finite element method based on the dual variational formulation.Apl. mat. 21 (1976), 43-65. MR 0398126 |
Reference:
|
[10] J. HASLINGER I. HLAVÁČEK: Convergence of a dual finite element method in $R_n$.Comment. Math. Univ. Carolinae 16 (1975), 369-486. MR 0386303 |
Reference:
|
[11] P. G. CIARLET P. A. RAVIART: General Lagrange and Hermite interpolation in $R^n$ with applications to finite element method.Arch. Rat. Mech. Anal. 46 (1972), 177-199. MR 0336957 |
Reference:
|
[12] J. H. BRAMBLE M. ZLÁMAL: Triangular elements in the finite element method.Math. Comp. 24 (1970), 809-820. MR 0282540 |
. |