Previous |  Up |  Next

Article

Title: The Lusin-Menchoff property of fine topologies (English)
Author: Lukeš, Jaroslav
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 18
Issue: 3
Year: 1977
Pages: 515-530
.
Category: math
.
MSC: 26A15
MSC: 31D05
MSC: 54C20
MSC: 54D15
MSC: 54D99
idZBL: Zbl 0359.54013
idMR: MR0464171
.
Date available: 2008-06-05T20:55:38Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/105796
.
Reference: [1] J. BLIEDTNER W. HANSEN: Simplicial cones in potential theory.Invent. Math. 29 (1975), 83-110. MR 0387630
Reference: [2] M. BRELOT: On topologies and boundaries in potential theory.Lecture Notes in Mathematics No. 175, Springer-Verlag, Berlin, 1971. Zbl 0222.31014, MR 0281940
Reference: [3] A. BRUCKNER: On derivatives with a dense set of zeros.Rev. Roumaine Math. Pures Appl.10 (1965), 149-153. Zbl 0138.27902, MR 0183829
Reference: [4] M. CHAIKA: The Lusin-Menchoff theorem in metric space.Indiana Univ. Math. J. 21 (1971), 351-354. Zbl 0228.28007, MR 0291396
Reference: [5] C. CONSTANTINESCU A. CORNEA: Potential theory on harmonic spaces.Berlin - Keidelberg - New York, Springer, 1972. MR 0419799
Reference: [6] B. FUGLEDE: Finely harmonic functions.Lecture Notes in Mathematics No. 289, Springer-Verlag, Berlin, 1972. Zbl 0248.31010, MR 0450590
Reference: [7] B. FUGLEDE: Remarks on fine continuity and the base operation in potential theory.Math. Ann. 210 (1974), 207-212. Zbl 0273.31014, MR 0357826
Reference: [8] C. GOFFMAN C. NEUGEBAUER T. NISHIURA: Density topology and approximate continuity.Duke Math. J. 28 (1961), 497-505. MR 0137805
Reference: [9] J. L. KELLEY: General topology.Van Nostrand, Princeton, 1955. Zbl 0066.16604, MR 0070144
Reference: [10] M. LACZKOVICH G. PETRUSKA: A theorem on approximately continuous functions.Acta Math. Acad. Sci. Hung. 24 (1973), 383-387. MR 0325871
Reference: [11] M. LACZKOVICH G. PETRUSKA: Baire $1$ functions, approximately continuous functions and derivatives.Acta Math. Acad. Sci. Hung. 25 (1974), 189-212. MR 0379766
Reference: [12] J. S. LIPIŃSKI: Sur les dérivées de Pompeiu.Rev. Roumaine Math. Pures Appl. 10 (1965), 447-451. MR 0193192
Reference: [13] J. LUKEŠ L. ZAJÍČEK: When finely continuous functions are of the first class of Baire.to appear. MR 0457646
Reference: [14] S. MARCUS: Sur les dérivées dont les zéros forment un ensemble frontière partout dense.Rend. Circ. Mat. Palermo 2 (1963), 1-36. Zbl 0124.03202, MR 0167572
Reference: [15] I. MAXIMOFF: On density points and approximately continuous functions.Tôhoku Math. J. 47 (1940), 237-250. Zbl 0024.30401, MR 0004283
Reference: [16] D. PREISS: Limits of approximately continuous functions.Czechoslovak Math. J. 21 (1971), 371-372. Zbl 0221.26005, MR 0286947
Reference: [17] S. SCHEINBERG: Topologies which generate a complete measure algebra.Advan. in Math. 7 (1971), 231-239. Zbl 0227.28009, MR 0286965
Reference: [18] F. D. TALL: The density topology.Pacific J. Math. 62 (1976), 275-284. Zbl 0305.54039, MR 0419709
Reference: [19] F. D. TALL: Normal subspaces of the density topology.preprint. Zbl 0345.54015, MR 0500830
Reference: [20] Z. ZAHORSKI: Sur la première dérivée.Trans. Amer. Math. Soc. 69 (1950), 1-54. Zbl 0038.20602, MR 0037338
.

Files

Files Size Format View
CommentatMathUnivCarol_018-1977-3_10.pdf 1.050Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo