Title:
|
On the order of convergence of Broyden-Gay-Schnabel's method (English) |
Author:
|
Martínez, J. M. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
19 |
Issue:
|
1 |
Year:
|
1978 |
Pages:
|
107-118 |
. |
Category:
|
math |
. |
MSC:
|
65H10 |
idZBL:
|
Zbl 0383.65029 |
idMR:
|
MR0501861 |
. |
Date available:
|
2008-06-05T20:57:27Z |
Last updated:
|
2012-04-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/105837 |
. |
Reference:
|
[1] J. G. P. BARNES: An algorithm for solving nonlinear equations based on the secant method.Computer Journal, 8, 1965, 66-72. MR 0181101 |
Reference:
|
[2] C. G. BROYDEN: A class of methods for solving nonlinear simultaneous equations.Mathematics of Computation, 19, 1965, 577-593. Zbl 0131.13905, MR 0198670 |
Reference:
|
[3] J. E. DENNIS J. J. MORE: A characterization of superlinear convergence and its application to quasi-Newton methods.Mathematics of Computation, 28, 1974, 549-560. MR 0343581 |
Reference:
|
[4] D. M. GAY: Some convergence properties of Broyden's method.Working Paper No 175, National Bureau of Economic Research, USA, 1977. |
Reference:
|
[5] D. M. GAY R. B. SCHNABEL: Solving systems of non-linear equations by Broyden's method with projected updates.Working Paper No 169, National Bureau of Economic Research, USA, 1977. |
Reference:
|
[6] W. B. GRAGG G. W. STEWART: A stable variant of the secant method for solving nonlinear equations.SIAM J. of Numerical Analysis, 13, 1976, 127-140. MR 0433856 |
Reference:
|
[7] J. J. MORE J. TRAGENSTEIN: On the global convergence of Broyden's method.Mathematics of Computation, 30, 1976, 523-540. MR 0418451 |
Reference:
|
[8] J. M. ORTEGA W. C. RHEINBOLDT: Iterative solution of nonlinear equations in several variables.Academic Press, New York, 1970. MR 0273810 |
Reference:
|
[9] M. J. D. POWELL: A hybrid method for nonlinear equations.en Rabinovitz P. (editor), Numerical methods for nonlinear algebraic equations, Gordon and Breach, London, 1970. Zbl 0277.65028, MR 0343589 |
Reference:
|
[10] P. WOLFE: The secant method for solving nonlinear equations.Communications ACM, 12, 1959, 12-13. |
. |