Previous |  Up |  Next

Article

Title: Die Konstruktion asymptotischer Fundamentalsysteme für lineare Differentialgleichungen mit Wendepunkten (German)
Title: Construction of asymptotic fundamental systems for linear differential equations with transition points (English)
Author: Roos, Hans-Georg
Language: German
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 20
Issue: 2
Year: 1979
Pages: 195-205
.
Category: math
.
MSC: 34E20
idZBL: Zbl 0418.34012
idMR: MR539551
.
Date available: 2008-06-05T21:01:13Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/105921
.
Reference: [1] ANYANWU D. U.: Uniform asymptotic solution of nonhomogeneous differential equations with turning points.SIAM J. Math. Anal. 8 (1977), 710-718. MR 0596985
Reference: [2] ANYANWU D. U., KELLER J. B.: A solution of higher order differential equations with several turning points.Comm. pure appl. Math. 31 (1978), 107-121. MR 0486874
Reference: [3] BAKKEN I.: On the central connection problem for a class of ordinary differential equations.Funkcial. Ekvac. 20 (1977), 115-156. MR 0499531
Reference: [4] BRAAKSMA B. L. J.: Recessive solutions of linear differential equations with polynomial coefficients.Lecture Notes Math. 280 (1972), 1-15. Zbl 0242.34007, MR 0477226
Reference: [5] EВГРАФОВ M. A., ФЕДОРЮК M. B.: Accимптотикаa peшений $W^\ast - p(x,\lambda)w = 0$ npи $X\rightarrow\infty$ в комплексной плоскости $z$.Успехи матем. наук 21 (1966), 3-50.
Reference: [6] GROEN P. P. N.: Singular perturbed differential operators of second order.Amsterdam 1976.
Reference: [7] IWANO M., SIBUYA A.: Reduction of the order of linear ordinary differential equation containing a small parameter.Kodai math. sem. rep. 15 (1963), 1-23. MR 0149034
Reference: [8] JURKAT W. B.: Meromorphe Differentialgleichungen.Lecture Notes Math. 637 (1978). Zbl 0408.34004, MR 0494886
Reference: [9] LEE R.: On the uniform simplification of linear differential equations in a full neighborhood of a turning point.J. Math. Anal. Appl. 27 (1969), 601-510. MR 0245919
Reference: [10] LEUNG A.: Connection formulas for asymptotic solutions of second order turning points in unbounded domains.SIAM J. Math. Anal. 4 (1973), 89-103 (Errata: 6 (1975), 600). Zbl 0252.34063, MR 0333382
Reference: [11] LEUNG A.: Lateral connections for asymptotic solutions around higher order turning points.J. Math. Anal. Appl. 50 (1975), 560-578. Zbl 0303.34044, MR 0372356
Reference: [12] LEUNG A.: Doubly asymptotic series for $n$-th order differential equations.SIAM J. Math. Anal. 5 (1974), 187-201. Zbl 0289.34081, MR 0348209
Reference: [13] LEUNG A.: A dubly asymptotic existence theorem and application to order reduction.Proc. London Math. Soc. 33 (1976), 151-176. MR 0412543
Reference: [14] LEUNG A.: A third-order linear differential equation on the real line with two turning points.J. diff. equ. 29 (1978), 304-328. Zbl 0397.34075, MR 0492643
Reference: [15] LYNN R., KELLER J.: Uniform asymptotic solutions of second order linear ordinary differential equations with turning points.Comm. Pure Appl. Math, 23 (1970), 379-408. Zbl 0194.12202, MR 0261100
Reference: [16] MC HUGH J.: A historical survey of ordinary linear differential equations with a large parameter and turning points.Arch. History Exact. Sci. 7 (1971), 277-324. MR 1554147
Reference: [17] NAKAKO M., NISHIMOTO T.: On a secondary turning point problem.Kodai Math. Sem. Rep. 22 (1970), 365-384. MR 0265696
Reference: [18] NISHIMOTO T.: On matching methods in turning point problems.Kodai Math. Sem. Rep. 17 (1965), 198-221. Zbl 0142.34404, MR 0183945
Reference: [19] NISHIMOTO T.: On a matching method for a linear ordinary differential equation containing a small parameter.Kodai Math. Sem. Rep. 17 (1965), 307-328, 18 (1966), 61-86, 19 (1967), 80-94.
Reference: [20] NISHIMOTO T.: On the central connection problem at a turning point.Kodai Math. Sem. Rep. 22 (1970), 30-44. Zbl 0193.05202, MR 0265696
Reference: [21] NISHIMOTO T.: On an extension theorem and its application for turning point problems of large order.Kodai Math. Sem. Rep. 25 (1973), 458-489. Zbl 0275.34060, MR 0335986
Reference: [22] NISHIMOTO T.: Asymptotic behaviour of the WKB approximations near a Stokes curve.Kodai Math. Sem. Rep. 29 (1977), 71-87. MR 0486877
Reference: [23] OLVER F.: Asymptotic and special functions.Academic press, New York 1974.
Reference: [24] OLVER F.: Connection formulas for second order differential equations with multiple turning points.SIAM J. Math. Anal. 8 (1977), 127-154. Zbl 0344.34050, MR 0427763
Reference: [25] OLVER F.: Connection formulas for second order differential equations having an arbitrary number of turning points of arbitrary multiplicites.SIAM J. Math. Anal. 8 (1977), 673-700. MR 0454215
Reference: [26] OLVER F.: Sufficient conditions for Ackerberg-O'Malley resonance.SIAM J. Math. Anal. 9 (1978), 328-355. Zbl 0375.34034, MR 0470383
Reference: [27] ROOS H.-G.: Die asymptotische Lösung einer linearen Differentialgleichung zweiter Qrdnung mit zweisegmentigen charakteristischen Polygon.Beiträge zur Analysis 7 (1975), 55-63. MR 0470384
Reference: [28] ROOS H.-G.: Die Konstruktion eines asymptotischen Fundamentalsystems für eine lineare Differentialgleichung vom hydrodynamischen Typ.ZAMM 56 (1976), 401-408. Zbl 0337.34054, MR 0431925
Reference: [29] ROOS H.-G.: Die asymptotische Lösung einer linearen Differentialgleichung mit dreisegmentigem charaktetistischen Polygon.Mathematische Nachrichten (im Druck).
Reference: [30] RUBENFELD L., WILLNER B.: Uniform asymptotic solution for linear second order ordinary differential equations with turning points.SIAM J. Appl. Math. 32 (1977), 21-38. MR 0437869
Reference: [31] SIBUYA Y.: Uniform simplification in a full neighborhood of a transition point.Mem. Amer. Math. Soc. no 149 (1974). Zbl 0297.34051, MR 0440140
Reference: [32] SIBUYA Y.: Global theory of second order linear ordinary differential equations with a polynomial coefficient.North Holland Math. Studies 18, Amsterdam 1975.
Reference: [33] WASOW W.: Asymptotic expansions fee ordinary differential equations.Interscience, New York 1965.
Reference: [34] WASOW W.: The central connection problem at turning points of linear differential equations.Comment. Math. Helv. 46 (1971), 65-86. Zbl 0218.34010, MR 0285775
Reference: [35] WASOW W.: Simple turning-point problems in unbounded domains.SIAM J. Math. Anal. 1 (1970), 153-170. Zbl 0211.11002, MR 0259259
Reference: [36] WILLNER B., RUBENFELD L.: Uniform asymptotic solution for a linear ordinary differential equation with one $\mu $-th order turning point.Comm. Pure Appl. Math. 29 (1976), 343-367. MR 0425282
Reference: [37] WYRWIGH H.: An explicit solution of the central connection problem for an $n$-th order linear ordinary differential equation with polynomial coefficients.SIAM J. Math. Anal. 8 (1977), 412-422. MR 0440141
.

Files

Files Size Format View
CommentatMathUnivCarol_020-1979-2_1.pdf 756.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo