Previous |  Up |  Next

Article

Title: Pseudo-contractive mappings and the Leray-Schauder boundary condition (English)
Author: Morales, Claudio H.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 20
Issue: 4
Year: 1979
Pages: 745-756
.
Category: math
.
MSC: 47H09
MSC: 47H10
MSC: 47H15
idZBL: Zbl 0429.47021
idMR: MR555187
.
Date available: 2008-06-05T21:03:12Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/105965
.
Reference: [1] F. E. BROWDER: Nonlinear mappings of nonexpansive and accretive type in Banach space.Bull. Amer. Math. Soc. 73 (1967), 875-881. MR 0232255
Reference: [2] F. E. BROWDER: Semicontractive and semiaccretive nonlinear mappings in Banach spaces.Bull. Amer. Math. Soc. 74 (1968), 660-665. Zbl 0164.44801, MR 0230179
Reference: [3] K. DEIMLING: Zeros of accretive operators.Manuscripta Math. 13 (1974), 365-374. Zbl 0288.47047, MR 0350538
Reference: [4] J. A. GATICA W. A. KIRK: Fixed point theorems for contraction mappings with nonexpansive and pseudocontractive mappings.Rocky Mountain J. Math. 4 (1974), 69-79. MR 0331136
Reference: [5] T. KATO: Nonlinear semigroup and evolution equations.J. Math. Soc. Japan 19 (1967), 508-520. MR 0226230
Reference: [6] W. A. KIRK: Remarks on pseudo-contractive mappings.Proc. Amer. Math. Soc. 25 (1970), 820-823. Zbl 0203.14603, MR 0264481
Reference: [7] W. A. KIRK C. MORALES: Condensing mappings and the Leray-Schauder boundary condition.J. Nonlinear Analysis (to appear). MR 0537339
Reference: [8] W. A. KIRK R. SCHÖNEBERG: Some results on pseudo-contractive mappings.Pacific J. Math. 71 (1977), 98-100. MR 0487615
Reference: [9] R. H. MARTIN: Differential equations on closed subset of a Banach space.Trans. Amer. Math. Soc. 179 (1973), 399-414. MR 0318991
Reference: [10] G. MÜLLER J. REINERMANN: Fixed point theorems for pseudo-contractive mappings and a counterexample for compact maps.Comment. Math. Univ. Carolinae 18 (1977), 281-298. MR 0448173
Reference: [11] R. D. NUSSBAUM: The fixed point index and fixed point theorems for k-set-contractions.Ph.D. Thesis, University of Chicago, Chicago, III., 1969.
Reference: [12] W. V. PETRYSHYN: Structure of the fixed point sets of $k$-set-contractions.Arch. Rat. Mech. Anal. 40 (1971), 312-328. MR 0273480
Reference: [13] W. V. PETRYSHYN: Fixed point theorems for various classes of $1$-set-contractive and $1$-ball-contractive mappings in Banach spaces.Trans. Amer. Math. Soc. 182 (1973), 323-352. Zbl 0277.47033, MR 0328688
Reference: [14] R. SCHÖNEBERG: Fixpunktsätze für einige Klassen kontraktionsartiger Operatoren in Banachräumen über einen Fixpunktindex, eine Zentrumsmethode und Fixpunkttheorie nichtexpansiver Abbildungen.Ph.D. Thesis, RWTH Aachen, 1977.
.

Files

Files Size Format View
CommentatMathUnivCarol_020-1979-4_10.pdf 809.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo