Previous |  Up |  Next

Article

Title: On Farkas-type theorems (English)
Author: Schirotzek, Winfried
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 22
Issue: 1
Year: 1981
Pages: 1-14
.
Category: math
.
MSC: 46A99
MSC: 47A05
MSC: 90C05
MSC: 90C48
idZBL: Zbl 0459.47001
idMR: MR609932
.
Date available: 2008-06-05T21:06:54Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106049
.
Reference: [1] A. BEN-ISRAEL A. CHARNES: On the intersection of cones and subspaces.Bull. Amer. Math. Soc. 74 (1968), 541-544. MR 0232183
Reference: [2] N. BOURBAKI: Espaces vectoriels topologiques.Chap. III-V, Hermann, Paris, 1964.
Reference: [3] B. D. CRAVEN J. J. KOLIHA: Generalizations of Farkas' theorem.SIAM J. Math. Anal. 8 (1977), 983-997. MR 0471302
Reference: [4] J. DIEUDONNÉ: Sur la séparation des ensembles convexes.Math. Ann. 163 (1966), 1-3. MR 0194865
Reference: [5] A. Я. ДУБОВИЦКИЙ, А. А. МИЛЮТИН: 3адачи на екстремум при наличии ограничений.Ж. вычисл. мат. и мат. физики 5 (1965), 395-453. Zbl 0255.00003, MR 0191691
Reference: [6] R. J. DUFFIN: Infinite programs, in Kuhn-Tucker (eds.): "Linear inequalities and related systems".pp. 157-170, Princetovn Univ. Press, Princeton, K.J., 1956. MR 0087573
Reference: [7] K. FAN: A generalization of the Alaoglu-Bourbaki theorem and its applications.Math. Z. 88 (1965), 48-60. Zbl 0135.34402, MR 0178326
Reference: [8] K. FAN: Asymptotic cones and duality of linear relations.J. Approximation Theory 2 (1969), 152-159. Zbl 0174.17801, MR 0248497
Reference: [9] J. FARKAS: Über die Theorie der einfachen Ungleichungen.J. Reine Angew. Math, 124 (1902), 1-27.
Reference: [10] L. HURWICZ: Programming in linear spaces, in Arrow-Hurwicz-Uzawa (eds.); "Studies in linear and non-linear programming".pp. 38-102, Stanford Univ. Press, Stanford, CA, 1958. MR 0108399
Reference: [11] K. S. KRETSCHMER: Programmes in paired spaces.Canad. J. Math. 13 (1961), 221-238. Zbl 0097.14705, MR 0155684
Reference: [12] P. LEVINE J.-Ch. POMEROL: Sur un théoreme de dualité, et ses applications a la programmation linéaire dans les espaces vectoriels topologiques.C.R. Acad. Sci., Paris, Sér. A, 274 (1972), 1722-1724. MR 0305105
Reference: [13] P. LEVINE J.-Ch. POMEROL: Infinite programming and duality in topological vector spaces.J. Math. Anal. Appl. 46 (1974), 75-89. MR 0371414
Reference: [14] T. NAKAMURA M. YAMASAKI: Sufficient conditions for duality theorems in infinite linear programming problems.Hiroshima Math. J. 9 (1979), 323-334. MR 0535516
Reference: [15] M. SCHECHTER: Linear programs in topological vector spaces.J. Math. Anal. Appl. 37 (1972), 492-500. Zbl 0235.90037, MR 0290789
Reference: [16] M. SCHECHTER: A solvability theorem for homogeneous functions.SIAM J. Math. Anal. 7 (1976), 696-701. Zbl 0341.90043, MR 0417922
.

Files

Files Size Format View
CommentatMathUnivCarol_022-1981-1_1.pdf 840.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo