Previous |  Up |  Next

Article

Title: On the existence of solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory. II. (English)
Author: Tarafdar, Enayat
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 22
Issue: 1
Year: 1981
Pages: 37-58
.
Category: math
.
MSC: 47A50
MSC: 47A53
MSC: 47A55
MSC: 47H10
MSC: 47H15
MSC: 47J05
idZBL: Zbl 0461.47034
idMR: MR609935
.
Date available: 2008-06-05T21:07:03Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106052
.
Related article: http://dml.cz/handle/10338.dmlcz/106045
.
Reference: [1] BROWDER F. E., PETRYSHYN W. V.: Approximation methods and the generalized topological degree for nonlinear mappings in Banach spaces.J. Functional Anal. 39 (1968), 217-245. MR 0244812
Reference: [2] BROWDER F. E., PETRYSHYN W. V.: The topological degree and the Galerkin approximations for non-compact operator in Banach spaces.Bull. Amer. Math. Soc. 74 (1968), 641-646. MR 0229100
Reference: [3] FITZPATRICK P. M.: A generalized degree for uniform limits of $A$-proper mappings.J. Math. Anal. Appl. 35 (1971), 536-552. Zbl 0215.21304, MR 0281069
Reference: [4] GAINES R. E., MAWHIN J. L.: Coincidence degree and non-linear differential equations.Lecture Notes in Mathematics, No. 568 (Edited by Dold A. and Eckmann B.) Springer-Verlag (1977). MR 0637067
Reference: [5] GOLDENSTEIN L. S., GOHBERG I. Ts, MARKUS A. S.: Investigation of some properties of bounded linear opeгators in connection with their $q$-norm.Uch. Zap. Kishinev, Gos. Univ. 29 (1957), 29-36.
Reference: [6] HETZER G.: Some remarks on $\phi_+$ opeгators and on the coincidence degree for Fгedholm equation with non-compact nonlineaг perturbation.Ann. Soc. Sci. Bruxelles Ser. I 89 (1975), 497-508. MR 0385653
Reference: [7] KRASNOSEL'SKII M. A.: Some problems of nonlinear analysis.Amer. Math. Soc. Transl. (2) 10 (1958), 345-409. MR 0094731
Reference: [8] KURATOWSKI C.: Sur les espaces complets.Fund. Math. 15 (1930), 301-309.
Reference: [9] MAWHIN J.: Equivalence Theorems for nonlinear operator equations and coincidence degree theory for some mappings in locally convex topological vector spaces.J. Differential Equations 12 (1972), 610-636. Zbl 0244.47049, MR 0328703
Reference: [10] NUSSBAUM R. D.: The fixed point index for local condensing maps.An. Mat. pura Appl. (4) 89 (1971), 217-258. Zbl 0226.47031, MR 0312341
Reference: [11] NUSSBAUM R. D.: Degree theory for local condensing maps.J. Math. Anal. Appl. 37 (1972), 741-766. Zbl 0232.47062, MR 0306986
Reference: [12] TARAFDAR E.: On the existence of solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory I.Comment. Math. Univ. Carolinae 21 (1980), 805-823. Zbl 0463.47046, MR 0597769
Reference: [13] VAINIKKO G. M., SADOVSKII B. N.: On the rotation of condensing vector fields.(Russian), Probl. Matem., Analiza Slozhn. Sist. No. 2, Voronezh (1968), 84-88. MR 0293469
.

Files

Files Size Format View
CommentatMathUnivCarol_022-1981-1_4.pdf 1.431Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo