Previous |  Up |  Next

Article

Title: Some fixed point theorems in locally convex spaces and applications to differential and integral equations (English)
Author: Rzepecki, Bogdan
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 22
Issue: 1
Year: 1981
Pages: 113-127
.
Category: math
.
MSC: 34A34
MSC: 45G10
MSC: 47G05
MSC: 47H10
idZBL: Zbl 0461.47028
idMR: MR609939
.
Date available: 2008-06-05T21:07:15Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106056
.
Reference: [1] A. BIELECKI: Une remarque sur la méthode de Banach-Cacciopoli-Tikhonov dans la théorie des équations différentielles ordinaires.Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 4 (1956), 261-264. MR 0082073
Reference: [2] F. F. BONSALL: Lectures on some fixed point theorems of functional analysis.Tata Institute of Fundamental Research, Bombay 1962. MR 0198173
Reference: [3] N. BOURBAKI: Espaces vectoriels topologiques.Paris 1953. Zbl 0050.10703
Reference: [4] G. L. CAIN, Jr. M. Z. NASHED: Fixed points and stability for a sum of two operators in locally convex spaces.Pacific J. Math. 39 (1971), 581-592. MR 0322606
Reference: [5] R. EDWARDS: Functional analysis.Theory and applications, New York 1965. Zbl 0182.16101, MR 0221256
Reference: [6] C. J. HIMMELBERG:. : Fixed points of compact multifunctions.J. Math. Anal. Appl. 38 (1972), 205-207. Zbl 0225.54049, MR 0303368
Reference: [7] H. H. KELLER: Differential calculus in locally convex spaces.Springer-Verlag, Lecture Notes in Mathematics, Berlin 1974. Zbl 0293.58001, MR 0440592
Reference: [8] M. A. KRASNOSELSKII: Two remarks on the method of succesive approximations.[in Russian], Uspehi Mat. Nauk 10 (1955), 123-127. MR 0068119
Reference: [9] S. G. KREIN: Linear differential equations in a Banach space.[in Russian], Moscow 1967. MR 0247239
Reference: [10] C. KURATOWSKI: Topologie v. I.Warsaw 1952.
Reference: [11] W. R. MELVTN: Some extensions of the Krasnoselskii fixed point theorems.J. Diff. Equat. 11 (1972), 335-348. MR 0301325
Reference: [12] V. MILLIONCHIKOV: A contribution to the theory of differential equations $dx/dt = f(x,t)$ in locally convex space.[in Russian], DAN SSSR 131 (1960), 510-513. MR 0118931
Reference: [13] M. A. NAIMARK: Normed rings.[in Russian], Moscow 1968. MR 0355602
Reference: [14] M. Z. NASHED J. S. W. WONG: Some variants of a fixed point of Krasnoselskii and applications to non-linear integral equations.J. Math. Mech. 18 (1969), 767-777. MR 0238140
Reference: [15] W. A. PETRYSHYN: A new fixed point theorem and its applications.Bull. Amer. Math. Soc. 2 (1972), 225-229.
Reference: [16] D. PRZEWORSKA, ROLEWICZ: Equations with transformed argument. An algebraic approach.Warsaw 1973. Zbl 0271.47008, MR 0493449
Reference: [17] B. RZEPECKI: On the Banach principle and its application to theory of differential equations.Comment. Math. 19 (1977), 355-363. MR 0478124
Reference: [18] V. M. SEHGAL S. P. SINGH: On a fixed point theorem of Krasnoselskii for locally convex spaces.Pacific J. Math. 62 (1976), 561-567. MR 0412911
Reference: [19] V. M. SEHGAL S. P. SINGH: A fixed point theorem for the sum of two mappings.Math. Japonica 23 (1978), 71-75. MR 0500289
Reference: [20] K. YOSIDA: Functional analysis.Berlin 1965. Zbl 0126.11504, MR 0180824
.

Files

Files Size Format View
CommentatMathUnivCarol_022-1981-1_8.pdf 946.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo