Previous |  Up |  Next

Article

Title: Constant and variable drop theorems on metrizable locally convex spaces (English)
Author: Turinici, Mihai
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 23
Issue: 2
Year: 1982
Pages: 383-398
.
Category: math
.
MSC: 46A05
MSC: 46A99
MSC: 47H10
MSC: 47H99
MSC: 47J25
MSC: 52A07
MSC: 54C10
MSC: 54E15
MSC: 54F05
MSC: 54H25
idZBL: Zbl 0497.47030
idMR: MR664983
.
Date available: 2008-06-05T21:12:00Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106161
.
Reference: [1] M. ALTMAN: Contractor directions, directional contractors and directional contractions for solving equations.Pacific J. Math. 62 (1976), 1-18. Zbl 0352.47027, MR 0473939
Reference: [2] M. ALTMAN: An application of the method of contractor directions to nonlinear programming.Numer. Funct. Anal. and Optim. 1 (1979), 647-663. Zbl 0444.49021, MR 0552245
Reference: [3] E. BISHOP R. R. PHELPS: The support functionals of a convex set.Proc. Symp. Pure Math., vol. VII (Convexity), pp. 27-36, Amer. Math. Soc., Providence R.I., 1963. MR 0154092
Reference: [4] H. BRÉZIS F. E. BROWDER: A general principle on ordered sets in nonlinear functional analysis.Adv. in Math. 21 (1976), 355-364. MR 0425688
Reference: [5] A. BRØNDSTED: On a lemma of Bishop and Phelps.Pacific J. Math. 55 (1974), 335-341. MR 0380343
Reference: [6] A. BRØNDSTED: Fixed points and partial orders.Proc. Amer. Math. Soc. 60 (1976), 365-366. MR 0417867
Reference: [7] A. BRØNDSTED: Common fixed points and partial orders.Proc. Amer. Math. Soc. 77 (1979), 365-368. MR 0545597
Reference: [8] F. E. BROWDER: Normal solvability and the Fredholm alternative for mappings into infinite dimensional manifolds.J. Funct. Anal. 8 (1971), 250-274. Zbl 0228.47044, MR 0288638
Reference: [9] F. E. BROWDER: On a theorem of Caristi and Kirk.Fixed Point Theory and its Applications, pp. 23-27, Academic Press, New York, 1976. Zbl 0379.54016, MR 0461474
Reference: [10] J. CARISTI: Fixed point theorems for mappings satisfying inwardness conditions., Trans. Amer. Math. Soc. 215 (1976), 241-251. Zbl 0305.47029, MR 0394329
Reference: [11] W. J. CRAMER W. O. RAY: Solvability of nonlinear operator equations.Pacific J. Math. 95 (1981), 37-50. MR 0631657
Reference: [12] J. DANEŠ: A geometric theorem useful in nonlinear functional analysis.Boll. Un. Mat. Ital. 6 (1972), 369-375. MR 0317130
Reference: [13] D. DOWNING W. A. KIRK: A generalization of Caristi's theorem with applications to nonlinear mapping theory.Pacific J. Math. 69 (1977), 339-346. MR 0440426
Reference: [14] I. EKELAND: Sur les problèmes variationals.C.R. Acad. Sci. Paris, 275 (1972), 1057-1059. MR 0310670
Reference: [15] I. EKELAND: On the variational principle.J. Math. Anal. Appl. 47 (1974), 324-353. Zbl 0286.49015, MR 0346619
Reference: [16] I. EKELAND: Nonconvex minimization problems.Bull. Amer. Math. Soc., N.S. 1 (1979), 443-474. Zbl 0441.49011, MR 0526967
Reference: [17] R. B. HOLMES: Geometric functional analysis and its applications.Springer Verlag, New York, 1975. Zbl 0336.46001, MR 0410335
Reference: [18] S. KASAHARA: On fixed points in partially ordered sets and Kirk-Caristi theorem.Math. Sem. Notes Kobe Univ. 3 (1975), 229-232. Zbl 0341.54056, MR 0405396
Reference: [19] W. A. KIRK: Caristi's fixed point theorem and metric convexity.Colloq. Math. 36 (1976), 81-86. Zbl 0353.53041, MR 0436111
Reference: [20] W. A. KIRK J. CARISTI: Mapping theorems in metric and Banach spaces.Bull. Acad. Pol. Sci. 23 (1975), 891-894. MR 0385654
Reference: [21] C. KURATOWSKI: Topologie.vol. I, P.W.N., Warszawa, 1958. Zbl 0078.14603, MR 0090795
Reference: [22] L. PASICKI: A short proof of the Caristi theorem.Comment. Math. 20 (1977/78), 427-428. MR 0519379
Reference: [23] S. I. POHOZHAYEV: On the normal solvability for nonlinear operators.(Russian), Dokl. Akad. Nauk SSSR 184 (1969), 40-43.
Reference: [24] J. SIEGEL: A new proof of Caristi's fixed point theorem.Proc. Amer. Math. Soc. 66 (1977), 54-56. Zbl 0369.54022, MR 0458403
Reference: [25] M. TURINICI: Maximal elements in partially ordered topological spaces and applications.An. St. Univ. "Al. I. Cuza" Iasi, 24 (1978), 259-264. MR 0533753
Reference: [26] M. TURINICI: Function lipschitzian mappings on convex metric spaces.Comment. Math. Univ. Carolinae 22 (1981), 289-303. Zbl 0497.54010, MR 0620364
Reference: [27] M. TURINICI: Local and global lipschitzian mappings on ordered metric spaces.Math. Nachrichten, to appear. Zbl 0481.54008, MR 0638331
Reference: [28] M. TURINICI: Mapping theorems via variable drops in Banach spaces.Rend. Ist. Lombardo, to appear. Zbl 0504.46008, MR 0698680
Reference: [29] C. URSESCU: Sur le contingent dans les espaces de Banach.Proc. Inst. Math. Iasi, pp. 183-184, Ed. Acad. RSR, Bucuresti, 1976. Zbl 0372.46019, MR 0450943
Reference: [30] C. S. WONG: On a fixed point theorem of contractive type.Proc. Amer. Math. Soc. 57 (1976), 283-284. Zbl 0329.54042, MR 0407826
Reference: [31] P. P. ZABREDCO M. A. KRASNOSELSKII: Solvability of nonlinear operator equations.(Russian), Funkc. Analiz i ego Prilož. 5 (1971), 42-44. MR 0283646
.

Files

Files Size Format View
CommentatMathUnivCarol_023-1982-2_15.pdf 1.081Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo