Previous |  Up |  Next

Article

Title: Isomorphisms of Lie algebras of vector fields (English)
Author: De Wilde, Marc
Author: Lecomte, Pierre B. A.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 23
Issue: 3
Year: 1982
Pages: 513-523
.
Category: math
.
MSC: 17B65
MSC: 57R25
MSC: 58A05
MSC: 58H05
idZBL: Zbl 0516.58052
idMR: MR677859
.
Date available: 2008-06-05T21:12:29Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106172
.
Reference: [1] I. AMEMIYA : Lie algebra of vector fields and complex structure.J. Math. Soc. Japan, 27 (1975), 545-549. Zbl 0311.57012, MR 0400252
Reference: [2] A. AVEZ A. LICHNEROWICZ A. DIAZ-MIRANDA : Sur l'algèbre de Lie des automorphismes infinitésimaux d'une variété symplectiques.J. Diff. Geom. 9 (March 1974), 1-40. MR 0356131
Reference: [3] J. DIEUDONNE: Elements d'Analyse 3.Cahiers scientifiques XXXIII Gauthier Villars, 1970.
Reference: [4] A. KORIYAMA : Lie algebra of vector fields with invariant submanifolds.Nagoya Math. J. 55 (1974), 91-110. MR 0370648
Reference: [5] A. KORIYAMA : On Lie algebras of vector fields.Trans. Amer. Math. Soc. 226 (1977), 89-117. Zbl 0392.57006, MR 0431196
Reference: [6] P. B. A. LECOMTE : On the infinitesimal automorphisms of a vector bundle.J. Math, pures et appl. Go (1981), 229-239. Zbl 0484.57011, MR 0633003
Reference: [7] A. LICHNEROWICZ : Algèbre de Lie des automorphismes infinitésimaux d'une structure de contact.J. Math, pures et appl. 52 (1973), 473-508. MR 0356132
Reference: [8] H. OMORI : Infinite dimensional Lie transformations groups.Lecture Notes in Math., vol. 427, Springer Verlag, Berlin and New York, 1974. MR 0431262
Reference: [9] L. E. PURSELL M. E. SHANKS : The Lie algebra of a smooth manifold.Proc. Amer. Math. Soc. 5 (1954), 468-472. MR 0064764
.

Files

Files Size Format View
CommentatMathUnivCarol_023-1982-3_9.pdf 821.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo