Title:
|
Restricted mean value property in axiomatic potential theory (English) |
Author:
|
Veselý, Jiří |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
23 |
Issue:
|
4 |
Year:
|
1982 |
Pages:
|
613-628 |
. |
Category:
|
math |
. |
MSC:
|
31B25 |
MSC:
|
31C05 |
MSC:
|
31D05 |
idZBL:
|
Zbl 0513.31009 |
idMR:
|
MR687558 |
. |
Date available:
|
2008-06-05T21:12:55Z |
Last updated:
|
2012-04-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/106182 |
. |
Reference:
|
[1] ASH R. B.: Measure, Integration and Functional Analysis.Academic Press, New York and London 1972. Zbl 0249.28001, MR 0435321 |
Reference:
|
[2] BAUER H.: Harmonische Räume und ihre Potentialtheorie.Springer Verlag, Berlin 1966. Zbl 0142.38402, MR 0210916 |
Reference:
|
[3] CONSTANTINESCU C., CORNE A.: Potential Theory on Harmonic Spaces.Springer Verlag, New York 1972. MR 0419799 |
Reference:
|
[4] FENTON P. C.: On sufficient conditions for harmonicity.Trans. Amer. Math, Soc. 253 (1979), 139-147. Zbl 0368.31001, MR 0536939 |
Reference:
|
[5] HEATH D.: Functions possessing restricted mean value properties.Proc. Amer. Math. Soc 41 (1973), 588-595. Zbl 0251.31004, MR 0333213 |
Reference:
|
[6] KELLOG O. D.: Converses of Gauss's theorem on the arithmetic mean.Trans. Amer. Math. Soc. 36 (1934), 227-242. MR 1501739 |
Reference:
|
[7] LEBESGUE H.: Sur le problème de Dirichlet.C. R. Acad. Sci. Paris 154 (1912), 335-337. |
Reference:
|
[8] LEBESGUE H.: Sur le théorème de la moyenne de Gauss.Bull. Soc. Math, France 40 (1912), 16-17. |
Reference:
|
[9] NETUKA I.: Harmonic functions and the mean value theorems.(in Czech), Čas. pěst. mat. 100 (1975), 391-409. MR 0463461 |
Reference:
|
[10] NETUKA I.: L'unicité du problème de Dirichlet généralisé pour un compact.in; Séminaire de Théorie du Potentiel Paris, No. 6, Lecture Notes in Mathematics 906, Springer Verlag, Berlin 1982, 269-281. Zbl 0481.31008, MR 0663569 |
Reference:
|
[11] ØKSENDAL B., STROOCK D. W.: A characterization of harmonic measure and Markov processes whose hitting distributions are preserved by rotations.translations and dilatations (preprint). |
Reference:
|
[12] VEECH W. A.: A converse to the mean value theorem for harmonic functions.Amer. J. Math. 97 (1976), 1007-1027. Zbl 0324.31002, MR 0393521 |
Reference:
|
[13] VESELÝ J.: Sequence solutions of the Dirichlet problem.Čas. pěst. mat. 106 (1981), 84-93. MR 0613711 |
. |