Previous |  Up |  Next

Article

Title: Restricted mean value property in axiomatic potential theory (English)
Author: Veselý, Jiří
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 23
Issue: 4
Year: 1982
Pages: 613-628
.
Category: math
.
MSC: 31B25
MSC: 31C05
MSC: 31D05
idZBL: Zbl 0513.31009
idMR: MR687558
.
Date available: 2008-06-05T21:12:55Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106182
.
Reference: [1] ASH R. B.: Measure, Integration and Functional Analysis.Academic Press, New York and London 1972. Zbl 0249.28001, MR 0435321
Reference: [2] BAUER H.: Harmonische Räume und ihre Potentialtheorie.Springer Verlag, Berlin 1966. Zbl 0142.38402, MR 0210916
Reference: [3] CONSTANTINESCU C., CORNE A.: Potential Theory on Harmonic Spaces.Springer Verlag, New York 1972. MR 0419799
Reference: [4] FENTON P. C.: On sufficient conditions for harmonicity.Trans. Amer. Math, Soc. 253 (1979), 139-147. Zbl 0368.31001, MR 0536939
Reference: [5] HEATH D.: Functions possessing restricted mean value properties.Proc. Amer. Math. Soc 41 (1973), 588-595. Zbl 0251.31004, MR 0333213
Reference: [6] KELLOG O. D.: Converses of Gauss's theorem on the arithmetic mean.Trans. Amer. Math. Soc. 36 (1934), 227-242. MR 1501739
Reference: [7] LEBESGUE H.: Sur le problème de Dirichlet.C. R. Acad. Sci. Paris 154 (1912), 335-337.
Reference: [8] LEBESGUE H.: Sur le théorème de la moyenne de Gauss.Bull. Soc. Math, France 40 (1912), 16-17.
Reference: [9] NETUKA I.: Harmonic functions and the mean value theorems.(in Czech), Čas. pěst. mat. 100 (1975), 391-409. MR 0463461
Reference: [10] NETUKA I.: L'unicité du problème de Dirichlet généralisé pour un compact.in; Séminaire de Théorie du Potentiel Paris, No. 6, Lecture Notes in Mathematics 906, Springer Verlag, Berlin 1982, 269-281. Zbl 0481.31008, MR 0663569
Reference: [11] ØKSENDAL B., STROOCK D. W.: A characterization of harmonic measure and Markov processes whose hitting distributions are preserved by rotations.translations and dilatations (preprint).
Reference: [12] VEECH W. A.: A converse to the mean value theorem for harmonic functions.Amer. J. Math. 97 (1976), 1007-1027. Zbl 0324.31002, MR 0393521
Reference: [13] VESELÝ J.: Sequence solutions of the Dirichlet problem.Čas. pěst. mat. 106 (1981), 84-93. MR 0613711
.

Files

Files Size Format View
CommentatMathUnivCarol_023-1982-4_1.pdf 1.054Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo