Previous |  Up |  Next

Article

Title: Euler polygons and Kneser's theorem for solutions of differential equations in Banach spaces (English)
Author: Rzepecki, Bogdan
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 23
Issue: 4
Year: 1982
Pages: 657-669
.
Category: math
.
MSC: 34C30
MSC: 34G20
idZBL: Zbl 0517.34049
idMR: MR687561
.
Date available: 2008-06-05T21:13:03Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106185
.
Reference: [1] A. AMBROSETTI: Un teorema di esistenza per le equazioni differenziali negli spazi di Banach.Rend. Sem. Mat. Univ. Padova 39 (1967), 349-360. Zbl 0174.46001, MR 0222426
Reference: [2] K. DEIMLING: Ordinary differential equations in Banach spaces.Lect. Notes in Math. 596, Springer-Verlag, Berlin 1977. Zbl 0361.34050, MR 0463601
Reference: [3] K. GOEBEL E. RZYMOWSKI: An existence theorem for the equation $x' = f(t,x)$ in Banach space.Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 28 (1970), 367-370. MR 0269957
Reference: [4] R. H. MARTIN, Jr.: Nonlinear operators and differential equations in Banach spaces.John Wiley and Sons, New York 1976. Zbl 0333.47023, MR 0492671
Reference: [5] B. RZEPECKI: On the method of Euler polygons for the differential equation in a locally convex space.Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 23 (1975), 411-414. Zbl 0315.34078, MR 0374593
Reference: [6] B. RZEPECKI: Differential equations in linear spaces.PhD Thesis, University of Poznań, 1976.
Reference: [7] B. RZEPECKI: A functional differential equation in a Banach space.Ann. Polon. Math. 36 (1979), 95-100. Zbl 0414.34071, MR 0529310
Reference: [8] B. RZEPECKI: On measure of noncompactness in topological spaces.Comment. Math. Univ. Carolinae 23 (1982), 105-116. MR 0653354
Reference: [9] S. SZUFLA: Structure of the solutions set of ordinary differential equations in Banach space.Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 21 (1973), 141-144. Zbl 0257.34064, MR 0333390
Reference: [10] S. SZUFLA: Kneser's theorem for weak solutions of ordinary differential equations in reflexive Banach spaces.Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 26 (1978), 407-413. Zbl 0384.34039, MR 0492684
.

Files

Files Size Format View
CommentatMathUnivCarol_023-1982-4_4.pdf 795.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo