Previous |  Up |  Next

Article

Title: On equilibrium point in topological vector spaces (English)
Author: Hadžić, Olga
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 23
Issue: 4
Year: 1982
Pages: 727-738
.
Category: math
.
MSC: 46A15
MSC: 46A50
MSC: 46A55
MSC: 47H10
idZBL: Zbl 0507.47039
idMR: MR687567
.
Date available: 2008-06-05T21:13:21Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106191
.
Reference: [1] F. BROWDER: Fixed point theory of multivalued mappings in topological vector space.Math. Ann 177 (1968), 283-301. MR 0229101
Reference: [2] K. FAN: Fixed point and minimax theorems in locally convex topological linear spaces.Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 121-126. Zbl 0047.35103, MR 0047317
Reference: [3] O. HADŽIĆ: On the admissibility of topological vector spaces.Acta Sci. Math. Szeged 42 (1980), 81-85. MR 0576938
Reference: [4] O. HADŽIĆ: Some fixed point and almost fixed point theorems for multivalued mappings in topological vector spaces.Nonlinear Analysis, Theory, Methods and Applications Vol. 5, No. 9 (1981), 1009-1019. MR 0633015
Reference: [5] O. HADŽIĆ: On multivalued mappings in paranormed spaces.Comment. Math. Univ. Carolinae 22 (1981), 129-136. MR 0609940
Reference: [6] S. HAHN: Zur Theorie nichtlinearer Operatorengleichungen in topologischen Vektorräumen.Dissertation B, TU Dresden, 1978.
Reference: [7] S. HAHN: A remark on a fixed point theorem for condensing set-valued mappings.Informationen, Technische Universität, Dresden, 07-5-77.
Reference: [8] S. HAHN: Zur Bedeutung der Fixpunktsatzes von Schauder für die Fixpunkttheorie nicht notwendig kompakter Abbildungen.Beiträge zur Analysis 16 (1981), 105-119. MR 0663474
Reference: [9] S. HAHN F. K. PÖTTER: Übeг Fixpunkte kompakter Abbildungen in topologischen Vektor Räumen.Stud. Math. 50 (1974), 1-16. MR 0346604
Reference: [10] J. ISHII: On the admiseibility of function spaces.J. Fac. Sci. Hokkaido Univ. Series I, 19 (1965/66), 49-55. MR 0188765
Reference: [11] V. KLEE: Leray-Schauder theory without local convexity.Math. Ann. 141 (1960), 286-296. Zbl 0096.08001, MR 0131150
Reference: [12] C. KRAUTHAUSEN: On the theorems of Dugundji and Schauder for certain nonconvex spaces.Math. Bakanica 4 (1974), 365-369. Zbl 0312.47048, MR 0375012
Reference: [13] C. KRAUTHAUSEN: Der Fixpunktsatz von Schauder in nicht notwendig konvexen Räumen sowie Anwendungen auf Hammerstein'sche Gleichungen.Doktors Dissertation, Aschen 1976.
Reference: [14] T. RIEDRICH: Die Räume $L^p (0,1)$ sind zulässig.Wiss. Z. Techn. Univ. Dresden 12 (1963), 1149-1152. Zbl 0135.35202, MR 0166600
Reference: [15] T. RIEDRICH: Der Raum $S(0,1)$ ist zulässig.Wiss. Z. Techn. Univ. Dresden 13 (1964), 1-6. Zbl 0158.13402, MR 0166601
Reference: [16] B. RZEPECKI: Remarks on Schauder's Fixed Point Theorem.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 589-603.
Reference: [17] P. TALLÓS: On Nash-equilibrium trajectories of multivalued differential equations.Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös nominatae, Sectio Mathematica, Tomus XXII-XXIII, 1979-1980, 235-242. MR 0588442
Reference: [18] K. ZIMA: On the Schauder fixed point theorem with respect to paranormed spaces.Comment. Math. 19 (1977), 421-423. MR 0458260
.

Files

Files Size Format View
CommentatMathUnivCarol_023-1982-4_10.pdf 939.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo