Previous |  Up |  Next

Article

Title: An application of a fixed point principle of Sadovskij to differential equations on the real line (English)
Author: Rzepecki, Bogdan
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 26
Issue: 4
Year: 1985
Pages: 713-717
.
Category: math
.
MSC: 34G20
idZBL: Zbl 0581.34048
idMR: MR831806
.
Date available: 2008-06-05T21:23:03Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106409
.
Reference: [1] A. AMBROSETTI: Un teorema di esistenza per le equazioni differenziali negli spazi di Banach.Rend. Sem. Mat. Univ. Padova, 39 (1967), 349-360. Zbl 0174.46001, MR 0222426
Reference: [2] J. DANEŠ: On densifying and related mappings and their application in nonlinear functional analysis.Theory of Nonlinear Operators, Akademie-Verlag, Bwelin 1974, 15-46. MR 0361946
Reference: [3] K. DEIMLING: Ordinary Differential Equations in Banach Spaces.Lect. Notes in Math. 596, Springer-Verlag, Berlin 1977. Zbl 0361.34050, MR 0463601
Reference: [4] R. H. MARTIN, Jr.: Non linear Operators and Differential Equations in Banach Spaces.John Wiley and Sons, New York, 1976. MR 0492671
Reference: [5] B. RZEPECKI: An existence theorem for bounded solutions of differential equations in Banach spaces.Rend. Sem. Mat. Univ. Padova 73 (1984). MR 0799899
Reference: [6] B. N. SADOVSKII: Limit compact and condensing operators.Russian Math. Surveys 27 (1972), 86-144. MR 0428132
Reference: [7] A. STOKES: The application of a fixed-point theorem to a variety of nonlinear stability problems.Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 231-235. MR 0104006
.

Files

Files Size Format View
CommentatMathUnivCarol_026-1985-4_9.pdf 375.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo