Previous |  Up |  Next

Article

Title: Stability and saddle-point property for a linear autonomous functional parabolic equation (English)
Author: Milota, Jaroslav
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 27
Issue: 1
Year: 1986
Pages: 87-101
.
Category: math
.
MSC: 34K20
MSC: 34K30
MSC: 35G10
MSC: 35K25
MSC: 35R10
MSC: 47D05
idZBL: Zbl 0606.35081
idMR: MR843423
.
Date available: 2008-06-05T21:24:03Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106432
.
Reference: [1] BLASIO di G., KUNISH K., SINASTRARI E.: Stability for abstract linear functional differential equations.preprint, Universität Graz, 1984.
Reference: [2] BROWDER F. E.: On the spectral theory of elliptic differential operators I.Math. Ann. 142 (1961), 22-130. Zbl 0104.07502, MR 0209909
Reference: [3] COLEMAN B. D., MIZEL V. J.: Norms and semigroups in the theory of fading memory.Arch. Rat. Mech. Anal. 23 (1966), 87-123. MR 0210343
Reference: [4] FITZGIBBON W. E.: Nonlinear Volterra equations with infinite delay.Monatsh. Math. 84 (1972), 275-288. MR 0481982
Reference: [5] FRIEDMAN A.: Partial Differential Equations.Holt, Rinehart and Winston, New York, 1969. Zbl 0224.35002, MR 0445088
Reference: [6] HALE J.: Theory of Functional Differential Equations.Appl. Math. Sciences, Vol. 3, Springer - Verlag, 1977. Zbl 0352.34001, MR 0508721
Reference: [7] HALE J. K., KATO J.: Phase space tor retarded equations with infinite delay.Funkcial. Ekvac. 21 (1978),11-41. MR 0492721
Reference: [8] HENRY D.: Geometric Theory of Semilinear Parabolic Equations.Lecture Notes in Math. No 840, Springer-Verlag, 1981. Zbl 0456.35001, MR 0610244
Reference: [9] HILLE E., PHILLIPS R. S.: Functional Analysis and Semigroups.Amer. Math. Soc. Providence, 1957. Zbl 0078.10004, MR 0089373
Reference: [10] KAPPEL F., SCHAPPACHER W.: Some considerations to the fundamental theory of infinite delay equations.J. Diff. Eqs. 37 (1980), 141-183. Zbl 0466.34036, MR 0587220
Reference: [11] KATO T.: Perturbation Theory for Linear Operators.Springer-Verlag, 1966. Zbl 0148.12601, MR 0203473
Reference: [12] KUNISH K., SCHAPPACHER W.: Necessary conditions for partial differential equations with delay to generate $C_0$ - semigroup.J. Diff. Eqs. 50 (1983), 49-79. MR 0717868
Reference: [13] NAITO T.: On linear autonomous retarded equations with an abstract phase space for infinite delay.J. Diff. Eqs. 33 (1979), 74-91. Zbl 0384.34042, MR 0540818
Reference: [14] NUSSBAUM R.: The radius of the essential spectrum.Duke Math. J. 37 (1970), 473-478. Zbl 0216.41602, MR 0264434
Reference: [15] SCHUMACHER K.: On the resolvent of linear nonautonomous partial functional differential equations.preprint No 247, Universität Heidelberg, 1984. MR 0807853
Reference: [16] SMULYAN Yu. L.: Compact perturbation of operators.(in Russian), Doklady Akad. Nauk SSSR 101 (1955), 35-38.
.

Files

Files Size Format View
CommentatMathUnivCarol_027-1986-1_8.pdf 1.098Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo