Title:
|
Minimal convex-valued weak$^\ast$ USCO correspondences and the Radon-Nikodým property (English) |
Author:
|
Jokl, Luděk |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
28 |
Issue:
|
2 |
Year:
|
1987 |
Pages:
|
353-376 |
. |
Category:
|
math |
. |
MSC:
|
46B20 |
MSC:
|
46B22 |
MSC:
|
47H05 |
idZBL:
|
Zbl 0642.46015 |
idMR:
|
MR904760 |
. |
Date available:
|
2008-06-05T21:29:20Z |
Last updated:
|
2012-04-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/106547 |
. |
Reference:
|
[1] E. Asplund: Fréchet differentiability of convex functions.Acta Math. 121 (1968), 31-47. Zbl 0162.17501, MR 0231199 |
Reference:
|
[2] E. Asplund R. T. Rockafellar: Gradients of convex functions.Tгans. Ameг. Math. Soc. 139 (1969), 443-467 MR 0240621 |
Reference:
|
[3] E. Bishop R. R. Phelps: A pгoof that every Banach space is subreflexive.Bull. Amer. Math. Soc. 67 (1961), 97-98 MR 0123174 |
Reference:
|
[4] R. D. Bourgin: Geometric Aspects of Convex Sets with the Radon-Nikodým Property.Lecture Notes in Mathematics, Vol. 993, Springer-Verlag . Zbl 0512.46017, MR 0704815 |
Reference:
|
[5] A. Brøndsted R. T. Rockafellar: On the subdifferentiability of convex functions.Proc. Amer. Math. Soc. 16 (1965), 605-611. MR 0178103 |
Reference:
|
[6] J. P. R. Christensen: Theorems of Namioka and R. E. Johnson type for upper semicontinuous and compact valued set valued mappings.Proc. Amer. Math. Soc. 86 (1982), 649-655. MR 0674099 |
Reference:
|
[7] J. P. R. Christensen P. S. Kendeгov: Dense strong continuity of mappings and the Radon-Nikodým property.Math. Scand. 54 (1984), 70-78. MR 0753064 |
Reference:
|
[8] J. B. Collieг: The dual of a space with the Radon-Nikodým property.Pacific J. Math. 64 (1976), 103-106. MR 0425580 |
Reference:
|
[9] S. Fitzpatrick: Monotone operatoгs and dentability.Bull. Austral. Math. Soc. 18 (1978), 77-82. MR 0482395 |
Reference:
|
[10] S. Fitzpatгick: Separately related sets and the Radon-Nikodým property.Illinois J. Math. 29 (1985), 229-247. |
Reference:
|
[11] J. R. Giles: On the characterization of Asplund spaces.J. Austral. Math. Soc. (Series A) 32 (1982), 134-144. MR 0643437 |
Reference:
|
[12] J. R. Giles: Convex Analysis with Aplication in Differentiation of Convex Functions.Pitman, London, 1982 MR 0650456 |
Reference:
|
[13] L. Hörmander: Sur la fonction d'appui des ensembles convexes dans un espace localement convexe.Arkiv für Math. 3 (1954), 181-186. MR 0068112 |
Reference:
|
[14] A. D. Ioffe V. M. Tihomirov: Theory of Extremal Problems.North Holland, Amsterdam, 1979. MR 0528295 |
Reference:
|
[15] L. Jokl: Některé aspekty konvexni analyzy a teorie Asplundových prostorů (Some aspects of convex analysis and the theory of Asplund spaces).CSc - thesis, Prague 1985. |
Reference:
|
[16] L. Jokl: Upper semicontinuous compact valued correspondences and Asplund spaces.to appear. |
Reference:
|
[17] L. Jokl: Convex-velued weak * usco correspondences.Comment. Math. Univ. Carolinae, 28, 1 (1987). MR 0904760 |
Reference:
|
[18] P. S. Kenderov: Semi-continuity of set-valued monotone mappings.Fundamenta Mathematicae, LXXXVIII (1975), 61-69. Zbl 0307.47049, MR 0380723 |
Reference:
|
[19] P. S. Kenderov: Multivalued monotone mappings are almost everywhere single-valued.Studia Mathematica, T. LVI. (1976), 199-203. Zbl 0341.47036, MR 0428122 |
Reference:
|
[20] P. S. Kenderov: Monotone operators in Asplund spaces.C. R. Acad. Sci. Bulgare 30 (1977), 963-964. Zbl 0377.47036, MR 0463981 |
Reference:
|
[21] P. S. Kenderov: Most of the optimization problems have unique solution.International Series of Numerical Mathematics. Vol. 72, 1984, Birkhauser Verlag Basel, 203-216. Zbl 0541.49006, MR 0882205 |
Reference:
|
[22] J. J. Moreau: Semi-continuity du sous-gradient d'une fonctionelle.C. R. Paris 260 (1965), 1067-1070. MR 0173936 |
Reference:
|
[23] I. Namioka R. R. Phelps: Banach spaces which are Asplund spaces.Duke Math. J. 42 (1975), 735-750. MR 0390721 |
Reference:
|
[24] R. R. Phelps: Dentability and extreme points in Banach spaces.J. Functional Anal. 17 (1974), 78-90. Zbl 0287.46026, MR 0352941 |
Reference:
|
[25] R. R. Phelps: Differentiability of Convex Functions on Banach Spaces.Lecture Notes, University London 1978. |
Reference:
|
[26] C. Stegall: Gâteaux differentiation of functions on a certain class of Banach spaces.Funct. Anal. Surveys and Recent Results, Amsterdam 1984, 35-45. Zbl 0548.46037, MR 0761371 |
Reference:
|
[27] C. Stegall: More Gâteaux differentiability spaces, Banach Spaces.Proceedings, Missouri 1984, Lecture Notes in Mathematics, Vol. 1166, Berlin 1985. MR 0827772 |
. |