Previous |  Up |  Next

Article

Title: Minimal convex-valued weak$^\ast$ USCO correspondences and the Radon-Nikodým property (English)
Author: Jokl, Luděk
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 28
Issue: 2
Year: 1987
Pages: 353-376
.
Category: math
.
MSC: 46B20
MSC: 46B22
MSC: 47H05
idZBL: Zbl 0642.46015
idMR: MR904760
.
Date available: 2008-06-05T21:29:20Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106547
.
Reference: [1] E. Asplund: Fréchet differentiability of convex functions.Acta Math. 121 (1968), 31-47. Zbl 0162.17501, MR 0231199
Reference: [2] E. Asplund R. T. Rockafellar: Gradients of convex functions.Tгans. Ameг. Math. Soc. 139 (1969), 443-467 MR 0240621
Reference: [3] E. Bishop R. R. Phelps: A pгoof that every Banach space is subreflexive.Bull. Amer. Math. Soc. 67 (1961), 97-98 MR 0123174
Reference: [4] R. D. Bourgin: Geometric Aspects of Convex Sets with the Radon-Nikodým Property.Lecture Notes in Mathematics, Vol. 993, Springer-Verlag . Zbl 0512.46017, MR 0704815
Reference: [5] A. Brøndsted R. T. Rockafellar: On the subdifferentiability of convex functions.Proc. Amer. Math. Soc. 16 (1965), 605-611. MR 0178103
Reference: [6] J. P. R. Christensen: Theorems of Namioka and R. E. Johnson type for upper semicontinuous and compact valued set valued mappings.Proc. Amer. Math. Soc. 86 (1982), 649-655. MR 0674099
Reference: [7] J. P. R. Christensen P. S. Kendeгov: Dense strong continuity of mappings and the Radon-Nikodým property.Math. Scand. 54 (1984), 70-78. MR 0753064
Reference: [8] J. B. Collieг: The dual of a space with the Radon-Nikodým property.Pacific J. Math. 64 (1976), 103-106. MR 0425580
Reference: [9] S. Fitzpatrick: Monotone operatoгs and dentability.Bull. Austral. Math. Soc. 18 (1978), 77-82. MR 0482395
Reference: [10] S. Fitzpatгick: Separately related sets and the Radon-Nikodým property.Illinois J. Math. 29 (1985), 229-247.
Reference: [11] J. R. Giles: On the characterization of Asplund spaces.J. Austral. Math. Soc. (Series A) 32 (1982), 134-144. MR 0643437
Reference: [12] J. R. Giles: Convex Analysis with Aplication in Differentiation of Convex Functions.Pitman, London, 1982 MR 0650456
Reference: [13] L. Hörmander: Sur la fonction d'appui des ensembles convexes dans un espace localement convexe.Arkiv für Math. 3 (1954), 181-186. MR 0068112
Reference: [14] A. D. Ioffe V. M. Tihomirov: Theory of Extremal Problems.North Holland, Amsterdam, 1979. MR 0528295
Reference: [15] L. Jokl: Některé aspekty konvexni analyzy a teorie Asplundových prostorů (Some aspects of convex analysis and the theory of Asplund spaces).CSc - thesis, Prague 1985.
Reference: [16] L. Jokl: Upper semicontinuous compact valued correspondences and Asplund spaces.to appear.
Reference: [17] L. Jokl: Convex-velued weak * usco correspondences.Comment. Math. Univ. Carolinae, 28, 1 (1987). MR 0904760
Reference: [18] P. S. Kenderov: Semi-continuity of set-valued monotone mappings.Fundamenta Mathematicae, LXXXVIII (1975), 61-69. Zbl 0307.47049, MR 0380723
Reference: [19] P. S. Kenderov: Multivalued monotone mappings are almost everywhere single-valued.Studia Mathematica, T. LVI. (1976), 199-203. Zbl 0341.47036, MR 0428122
Reference: [20] P. S. Kenderov: Monotone operators in Asplund spaces.C. R. Acad. Sci. Bulgare 30 (1977), 963-964. Zbl 0377.47036, MR 0463981
Reference: [21] P. S. Kenderov: Most of the optimization problems have unique solution.International Series of Numerical Mathematics. Vol. 72, 1984, Birkhauser Verlag Basel, 203-216. Zbl 0541.49006, MR 0882205
Reference: [22] J. J. Moreau: Semi-continuity du sous-gradient d'une fonctionelle.C. R. Paris 260 (1965), 1067-1070. MR 0173936
Reference: [23] I. Namioka R. R. Phelps: Banach spaces which are Asplund spaces.Duke Math. J. 42 (1975), 735-750. MR 0390721
Reference: [24] R. R. Phelps: Dentability and extreme points in Banach spaces.J. Functional Anal. 17 (1974), 78-90. Zbl 0287.46026, MR 0352941
Reference: [25] R. R. Phelps: Differentiability of Convex Functions on Banach Spaces.Lecture Notes, University London 1978.
Reference: [26] C. Stegall: Gâteaux differentiation of functions on a certain class of Banach spaces.Funct. Anal. Surveys and Recent Results, Amsterdam 1984, 35-45. Zbl 0548.46037, MR 0761371
Reference: [27] C. Stegall: More Gâteaux differentiability spaces, Banach Spaces.Proceedings, Missouri 1984, Lecture Notes in Mathematics, Vol. 1166, Berlin 1985. MR 0827772
.

Files

Files Size Format View
CommentatMathUnivCarol_028-1987-2_17.pdf 1.590Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo