Previous |  Up |  Next

Article

Title: Five equivalent theorems on a convex subset of a topological vector space (English)
Author: Tarafdar, Enayat
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 30
Issue: 2
Year: 1989
Pages: 323-326
.
Category: math
.
MSC: 46A55
MSC: 47H10
idZBL: Zbl 0681.47029
idMR: MR1014132
.
Date available: 2008-06-05T21:38:46Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106750
.
Reference: [1] Allen G.: Variational inequalities, complementarity problems, and duality theorems.J. Math. Anal. Appl. 58 (1977), 1-10. Zbl 0383.49005, MR 0513305
Reference: [2] Fan K.: A minimax inequality and applications, Inequalities.Vol III, (Ed. O. Shisha), New York, London, Academic Press 13, 1972, pp. 103-113. MR 0341029
Reference: [3] Fan K.: Some properties of convex sets related to fixed point theorems.Math. Ann. 266 (1984), 519-537. Zbl 0515.47029, MR 0735533
Reference: [4] Knaster B., Kuratowski C, Mazurkiewicz S.: Ein Beweis des Fixpunktsatzes für n-dimensionale Simplexe.Fund. Math. 14 (1929), 132-137.
Reference: [5] Lin T. C.: Convex sets, fixed points, variational and minimax inequalities.Bull. Austral. Math. Soc. 34 (1986), 107-117. Zbl 0597.47038, MR 0847978
Reference: [6] Tarafdar E.: A fixed point theorem equivalent to Fan-Knaster-Kuratowski-Mazurkiewic's theorem.J. Math. Anal. Appl. 128 (1987), 475-479. MR 0917380
Reference: [7] Tarafdar E.: On nonlinear variational inequalities.Proc. Amer. Math. Soc. 67 (1977), 95-98. Zbl 0369.47029, MR 0467408
Reference: [8] Tarafdar E.: Variational problems via a fixed point theorem.Indian Journal of Mathematics 28 (1986), 229-240. Zbl 0641.49005, MR 0900728
.

Files

Files Size Format View
CommentatMathUnivCarol_030-1989-2_14.pdf 423.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo