Previous |  Up |  Next

Article

Title: Finite-to-finite universal varieties of distributive double $p$-algebras (English)
Author: Koubek, Václav
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 31
Issue: 1
Year: 1990
Pages: 67-83
.
Category: math
.
MSC: 06D15
MSC: 08C05
MSC: 18B10
MSC: 18B15
MSC: 20M30
idZBL: Zbl 0714.18003
idMR: MR1056172
.
Date available: 2008-06-05T21:42:02Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106820
.
Reference: [1] M. E. Adams V. Koubek J. Sichler: Homomorphisms and endomorphisms of distributive lattices.Houston J. Math. 11 (1985), 129-146. MR 0792189
Reference: [2] M. E. Adams J. Sichler: Endomorphism monoids of distributive double p-algebras.Glasgow Math. J. 20 (1979), 81-86. MR 0523792
Reference: [3] R. Beazer: The determination congruence on double p-algebras.Alg. Universalis 6 (1976), 121-129. Zbl 0353.06002, MR 0419319
Reference: [4] B. A. Davey: Subdirectly irreducible distributive double p-algebras.Alg. Universalis 8 (1978), 73-88. Zbl 0381.06019, MR 0450160
Reference: [5] B. A. Davey D. Duffus: Exponentiation and duality, Ordered Sets.NATO Advanced Study Institutes Series 83, D. Reidel Publishing Company, Dordrecht, Holland, 1982. MR 0661291
Reference: [6] P. Goralčík V. Koubek J. Sichler: Universal varieties of $(0,1)$-lattices.to appear in Canad. Math. J. MR 1062740
Reference: [7] G. Grätzer: General Lattice Theory.Academic Press, New York, San Francisco, 1978. MR 0509213
Reference: [8] B. Jónsson: Algebras whose congruence lattices are distributive.Math. Scand. 21 (1967), 110-121. MR 0237402
Reference: [9] V. Koubek: Infinite image homomorphisms of distributive bounded lattices.in proc. Colloquia Math. Soc. János Bolayi, 43. Lectures in Universal Algebra, Szeged 1983, North Holland 1985. MR 0860268
Reference: [10] V. Koubek J. Sichler: Universal varieties of distributive double $p$-algebras.Glasgow Math. J. 20 (1985), 121-131. MR 0798738
Reference: [11] V. Koubek J. Sichler: Categorical universality of regular double $p$-algebras.to appear in Glasgow Math. J. MR 1073673
Reference: [12] V. Koubek J. Sichler: Universal finitely generated varieties of distributive double p-algebras.
Reference: [13] H. A. Priestley: Representation of distributive lattices by means of order Stone spaces.Bull. London Math. Soc. 2 (1970), 186-190. MR 0265242
Reference: [14] H. A. Priestley: Ordered topological spaces and the representation of distributive lattices.Proc. London Math. Soc. 24 (1972), 507-530. Zbl 0323.06011, MR 0300949
Reference: [15] H. A. Priestley: The construction of spaces dual to pseudocomplemented distributive lattices.Quart. J. Math. Oxford 26 (1975), 215-228. Zbl 0323.06013, MR 0392731
Reference: [16] H. A. Priestley: Ordered sets and duality for distributive lattices.Ann Discrete Math. 23 (1984), 36-90. Zbl 0557.06007, MR 0779844
Reference: [17] A. Pultr V. Trnková: Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories.North Holland, Amsterdam, 1980. MR 0563525
.

Files

Files Size Format View
CommentatMathUnivCarol_031-1990-1_10.pdf 1.628Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo