Previous |  Up |  Next

Article

Title: On a “Liapunov like” function for an equation $\dot z=f(t,z)$ with a complex-valued function $f$ (English)
Author: Kalas, Josef
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 18
Issue: 2
Year: 1982
Pages: 65-76
.
Category: math
.
MSC: 34D05
MSC: 34D20
MSC: 34E05
MSC: 34M99
idZBL: Zbl 0498.34039
idMR: MR683347
.
Date available: 2008-06-06T06:10:32Z
Last updated: 2012-05-09
Stable URL: http://hdl.handle.net/10338.dmlcz/107125
.
Reference: [1] Hartman P.: Ordinary Differential Equations.Wiley, New York/London/Sydney, 1964. Zbl 0125.32102, MR 0171038
Reference: [2] Kalas J.: Asymptotic behaviour of the solutions of the equation dz/dt = f(t, z) with a complex-valued function f.Proceedings of the Colloquium on Qualitative Theory of Differential Equations, August 1979, Szeged-Hungary, Seria Colloquia Mathematica Societatis János Bolyai & North-Holland Publishing Company, pp. 431-462. MR 0680606
Reference: [3] Kalas J.: On the asymptotic behaviour of the equation dz/dt =f(t,z) with a complex-valued function f.Arch. Math. (Brno) 17 (1981), 11-22. Zbl 0475.34028, MR 0672484
Reference: [4] Kalas J.: On certain asymptotic properties of the solutions of the equation $\dot{z} = f(t, z)$ with a complex-valued function f.Czech. Math. Journal, to appear. MR 0718923
Reference: [5] Kalas J.: Asymptotic properties of the solutions of the equation $\dot{z} = f(t, z)$ with a complex-valued function f.Arch. Math. (Brno) 17 (1981), 113-124. MR 0672315
Reference: [6] Kalas J.: Asymptotic behaviour of equations $\dot{z] = q(t, z) - p(t) z^2$ and $\ddot{x} = x \varphi(t, \dot{x} x^{-1})$.Arch. Math. (Brno) 17 (1981), 191-206. MR 0672659
Reference: [7] Ráb M.: The Riccati differential equation with complex-valued coefficients.Czech. Math. Journal 20 (1970), 491-503. MR 0268452
Reference: [8] Ráb M.: Geometrical approach to the study of the Riccati differential equation with complex-valued coefficients.J. Diff. Equations 25 (1977), 108-114. MR 0492454
Reference: [9] Sverdlove R.: Vector fields defined by complex functions.J. Differential Equations 34 (1979), 427-439. Zbl 0431.34034, MR 0555320
.

Files

Files Size Format View
ArchMath_018-1982-2_2.pdf 1.648Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo